Advertisement

Journal of Materials Science

, Volume 54, Issue 3, pp 2333–2342 | Cite as

Enhanced ammonia sensing characteristics of CeO2-decorated SiO2/PANI free-standing nanofibrous membranes

  • Zengyuan Pang
  • Qingxin Nie
  • Yanan Zhu
  • Mingqiao GeEmail author
  • Mingqing Chen
Electronic materials

Abstract

CeO2-decorated SiO2/PANI free-standing nanofibrous membranes were fabricated using an approach which involved electrospinning–electrospraying, calcination and in situ polymerization. Specifically, the CeO2 precursor deposition on the electrospun nanofibers surface was done through electrospraying, followed by the calcination which resulted in CeO2 particles and SiO2 free-standing nanofibers. By incorporating CeO2, ammonia sensing properties of the as-prepared SiO2/PANI free-standing composite nanofibers (SiO2/PANI FCN) can be dramatically improved. The sensing response value of SiO2/CeO2/PANI free-standing composite nanofibers (SiO2/CeO2/PANI FCN), analyzed with 300 ppm ammonia, was ca. 36.98, which was superior to SiO2/PANI composite nanofibers. The ammonia sensing mechanism of the SiO2/CeO2/PANI FCN can be attributed to the P–N heterojunctions formed between p-type PANI and n-type CeO2. Furthermore, the SiO2/CeO2/PANI free-standing ammonia sensor presented ideal selectivity and repeatability. This work provided a new insight into the development of free-standing and high-performance gas sensors.

Notes

Acknowledgements

This work is supported by China Postdoctoral Science Foundation funded project (No. 2018M632231) and the Natural Science Foundation of Jiangsu Province of China (No. BK20171140).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10853_2018_2981_MOESM1_ESM.docx (291 kb)
Supplementary material 1 (DOCX 290 kb)

References

  1. 1.
    Tumbiolo S, Gal J-F, Maria P-C, Zerbinati O (2004) Determination of benzene, toluene, ethylbenzene and xylenes in air by solid phase micro-extraction/gas chromatography/mass spectrometry. Anal Bioanal Chem 380:824–830CrossRefGoogle Scholar
  2. 2.
    Fragoso-Mora JR, Matatagui D, Bahos FA, Fontecha J, Fernandez MJ, Santos JP, Sayago I, Gràcia I, Horrillo MC (2018) Gas sensors based on elasticity changes of nanoparticle layers. Sens Actuators B Chem 268:93–99CrossRefGoogle Scholar
  3. 3.
    Huang Q, Wang J, Sun Y, Li X, Wang X, Zhao Z (2018) Gas-sensing properties of composites of Y-zeolite and SnO2. J Mater Sci 53(9):6729–6740.  https://doi.org/10.1007/s10853-018-2016-y CrossRefGoogle Scholar
  4. 4.
    Abbasi A, Sardroodi JJ (2018) Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/stanene heterostructures employing DFT calculations. Appl Surf Sci 442:368–381CrossRefGoogle Scholar
  5. 5.
    Lian D, Shi B, Dai R, Jia X, Xiangyang W (2017) Synthesis and enhanced acetone gas-sensing performance of ZnSnO3/SnO2 hollow urchin nanostructures. J Nanopart Res 19(12):401.  https://doi.org/10.1007/s11051-017-4094-1 CrossRefGoogle Scholar
  6. 6.
    Park S, Kim S, Sun G-J, Lee C (2015) Synthesis, structure, and ethanol gas sensing properties of In2O3 nanorods decorated with Bi2O3 nanoparticles. ACS Appl Mater Interfaces 7(15):8138–8146CrossRefGoogle Scholar
  7. 7.
    Guo W, Mei L, Wen J, Ma J (2016) High-response H2S sensor based on ZnO/SnO2 heterogeneous nanospheres. RSC Adv 6(18):15048–15053CrossRefGoogle Scholar
  8. 8.
    Harale NS, Dalavi DS, Mali SS, Tarwal NL, Vanalakar SA, Rao VK, Hong CK, Kim JH, Patil PS (2018) Single-step hydrothermally grown nanosheet assembled tungsten oxide thin films for sensitive and selective NO2 gas detection. J Mater Sci 53:6094–6105.  https://doi.org/10.1007/s10853-017-1905-9 CrossRefGoogle Scholar
  9. 9.
    Qi J, Xinxin X, Liu L, Xiao X, Lau KT (2014) Fabrication of textile based conductometric polyaniline gas sensor. Sens Actuators B Chem 202:732–740CrossRefGoogle Scholar
  10. 10.
    Ding L, Qin Z, Dou Z, Shen Y, Cai Y, Zhang Y, Zhou Y (2018) Morphology-promoted synergistic effects on the sensing properties of polyaniline ultrathin layers on reduced graphene oxide sheets for ammonia and formaldehyde detection. J Mater Sci 53(10):7595–7608.  https://doi.org/10.1007/s10853-018-2109-7 CrossRefGoogle Scholar
  11. 11.
    Pirsa S, Heidari H, Lotfi J (2016) Design selective gas sensors based on nano-sized polypyrrole/polytetrafluoroethylene and polypropylene membranes. IEEE Sens J 16(9):2922–2928CrossRefGoogle Scholar
  12. 12.
    Zhu G, Zhang Q, Xie G, Yuanjie S, Zhao K, Hongfei D, Jiang Y (2016) Gas sensors based on polyaniline/zinc oxide hybrid film for ammonia detection at room temperature. Chem Phys Lett 665:147–152CrossRefGoogle Scholar
  13. 13.
    Shinde NM, Deshmukh PR, Patil SV, Lokhande CD (2013) Development of polyaniline/Cu2ZnSnS4 (CZTS) thin film based heterostructure as room temperature LPG sensor. Sens Actuators A Phys 193:79–86CrossRefGoogle Scholar
  14. 14.
    Nalage SR, Mane AT, Pawar RC, Lee CS, Patil VB (2014) Polypyrrole–NiO hybrid nanocomposite films: highly selective, sensitive, and reproducible NO2 sensors. Ionics 20(11):1607–1616CrossRefGoogle Scholar
  15. 15.
    Radha G, Samanta D, Balakumar S, Mandal AB, Jaisankar SN (2015) Single-walled carbon nanotubes decorated with polypyrrole–TiO2 nanocomposites. J Nanosci Nanotechnol 15(5):3879–3886CrossRefGoogle Scholar
  16. 16.
    Yang F, Guo Z (2018) Fabrication of inorganic-organic hybrid TiO2@PDA@CuO composite nanoparticles and its special wettable, gas sensing and photocatalytic behaviors. Mater Lett 217:320–323CrossRefGoogle Scholar
  17. 17.
    Bashouti MY, de la Zerda AS, Geva D, Haick H (2014) Designing thin film-capped metallic nanoparticles configurations for sensing applications. J Phys Chem C 118:1903–1909CrossRefGoogle Scholar
  18. 18.
    Xiaobing H, Zhu Z, Li Z, Xie L, Yihua W, Zheng L (2018) Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor. Sens Actuators B Chem 264:139–149CrossRefGoogle Scholar
  19. 19.
    Jawaher KR, Indirajith R, Krishnan S, Robert R, Pasha SK, Deshnnukh K, Sastikumar D, Das SJ (2018) A high sensitivity isopropanol vapor sensor based on Cr2O3–SnO2 heterojunction nanocomposites via chemical precipitation route. J Nanosci Nanotechnol 18(8):5454–5460CrossRefGoogle Scholar
  20. 20.
    Fang J, Zhu Y, Wu D, Zhang C, Xu S, Xiong D, Yang P, Wang L, Chu PK (2017) Gas sensing properties of NiO/SnO2 heterojunction thin film. Sens Actuators B Chem 252:1163–1168CrossRefGoogle Scholar
  21. 21.
    Zhang D, Zhenling W, Li P, Zong X, Dong G, Zhang Y (2018) Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature. Sens Actuators B Chem 258:895–905CrossRefGoogle Scholar
  22. 22.
    Ji S, Wang H, Wang T, Yan D (2013) A high-performance room-temperature NO2 sensor based on an ultrathin heterojunction film. Adv Mater 25(12):1755–1760CrossRefGoogle Scholar
  23. 23.
    Miyoshi Makoto, Fujita Shu, Egawa Takashi (2015) Demonstration of NOx gas sensing for Pd/ZnO/GaN heterojunction diodes. J Vac Sci Technol B 33(1):013001.  https://doi.org/10.1116/1.4906032 CrossRefGoogle Scholar
  24. 24.
    Di W, Lou Z, Wang Y, Tingting X, Shi Z, Junmin X, Tian Y, Li X (2017) Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor. Nanotechnology 28:435503.  https://doi.org/10.1088/1361-6528/aa89b5 CrossRefGoogle Scholar
  25. 25.
    Li Y, Jiao M, Zhao H, Yang M (2018) High performance gas sensors based on in situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties. Sens Actuators B Chem 264(1):285–295CrossRefGoogle Scholar
  26. 26.
    Wang L, Huang H, Xiao S, Cai D, Liu Y, Liu B, Wang D, Wang C, Li H, Wang Y, Li Q, Wang T (2014) Enhanced sensitivity and stability of room-temperature NH3 sensors using core–shell CeO2 nanoparticles@cross-linked PANI with p–n heterojunctions. ACS Appl Mater Interfaces 6(16):14131–14140CrossRefGoogle Scholar
  27. 27.
    Nie Q, Pang Z, Li D, Zhou H, Huang F, Cai Y, Wei Q (2018) Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature. Colloids Surf A Physicochem Eng Asp 537:532–539CrossRefGoogle Scholar
  28. 28.
    Pang Z, Jian Yu, Li D, Nie Q, Zhang J, Wei Q (2018) Free-standing TiO2–SiO2/PANI composite nanofibers for ammonia sensors. J Mater Sci Mater Electron 29(5):3576–3583CrossRefGoogle Scholar
  29. 29.
    Nie Q, Pang Z, Hangyi L, Cai Y, Wei Q (2016) Ammonia gas sensors based on In2O3/PANI hetero-nanofibers operating at room temperature. Beilstein J Nanotechnol 7:1312–1321CrossRefGoogle Scholar
  30. 30.
    Pang Z, Yang Z, Chen Y, Zhang J, Wang Q, Huang F, Wei Q (2016) A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloids Surf A Physicochem Eng Asp 494:248–255CrossRefGoogle Scholar
  31. 31.
    Chen H, Hsiao C, Chen W, Chang C, Chou T, Liu I, Lin K, Liu W (2018) Characteristics of a Pt/NiO thin film-based ammonia gas sensor. Sens Actuators B Chem 256:962–967CrossRefGoogle Scholar
  32. 32.
    Kumar R, Kushwaha N, Pandey S, Priya R, Mittal J (2018) Superior NH3 sensor using Ni doped K-OMS-2 nanofibers. IEEE Sens J 18:956–961CrossRefGoogle Scholar
  33. 33.
    Maity D, RajendraKumar RT (2018) Polyaniline anchored MWCNTs on fabric for high performance wearable ammonia sensor. ACS Sens.  https://doi.org/10.1021/acssensors.8b00589 CrossRefGoogle Scholar
  34. 34.
    Ghosh R, Singh A, Santra S, Ray SK, Chandra A, Guha PK (2014) Highly sensitive large-area multi-layered graphene-based flexible ammonia sensor. Sens Actuators B Chem 205:67–73CrossRefGoogle Scholar
  35. 35.
    Liu C, Tai H, Zhang P, Yuan Z, Xiaosong D, Xie G, Jiang Y (2018) A high-performance flexible gas sensor based on self-assembled PANI–CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens Actuators B Chem 261:587–597CrossRefGoogle Scholar
  36. 36.
    Bairi VG, Bourdo SE, Sacre N, Nair D, Berry BC, Biris AS, Viswanathan T (2015) Ammonia gas sensing behavior of tanninsulfonic acid doped polyaniline–TiO2 composite. Sensors 15:26415–26429CrossRefGoogle Scholar
  37. 37.
    Zhou W, Guo Y, Zhang H, Yajun S, Liu M, Dong B (2017) A highly sensitive ammonia sensor based on spinous core–shell PCL-PANI fibers. J Mater Sci 52:6554–6566.  https://doi.org/10.1007/s10853-017-0890-3 CrossRefGoogle Scholar
  38. 38.
    Gumpu MB, Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB (2014) Development of electrochemical biosensor with ceria–PANI core–shell nano-interface for the detection of histamine. Sens Actuators B Chem 199:330–338CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Eco-Textiles, Ministry of EducationJiangnan UniversityWuxiChina
  2. 2.School of Chemical and Material EngineeringJiangnan UniversityWuxiChina

Personalised recommendations