Advertisement

Journal of Materials Science

, Volume 54, Issue 3, pp 1948–1957 | Cite as

The critical role of alkali cations in synthesizing Bi5FeTi3O15 nanocrystals

  • Jifang Chen
  • Zhiang Li
  • Tong Chen
  • Dejuan Sun
  • Liu Liu
  • Min Liu
  • Yalin Lu
Ceramics
  • 84 Downloads

Abstract

Recently, BFTO compounds attract much attention due to their potential as single-phase multiferroic materials. However, it is still challenging to synthesize pure phase BFTO nanocrystals due to their structural and compositional complexity. In this article, BFTO nanocrystals were successfully synthesized by adopting MOH (M = Li+, Na+ and K+) as mineralizers, and the critical role of M+ ion is expatiated in detail. Based on the anion coordination polyhedron growth unit model, growth unit/OH/M+ core/shell capping layers would form during the syntheses process, and the outermost M+ layer can hinder the growth and formation of pure phase BFTO nanocrystals via the effective passivation beyond a certain critical concentration of M+, i.e., 0.5 M, 2.5 M and 0.5 M for LiOH, NaOH and KOH, respectively, proportional to 1/RM+ (the solvated cation radius) and \( {\text{K}}_{{\rm{D}}}^{{{\rm{MOH}}}} \) (the dissociation constant of MOH). The coefficient of \( {\text{R}}_{\text{Li + }} > {\text{R}}_{\text{Na + }} > {\text{R}}_{\text{K + }} \) and \( {\text{K}}_{\text{D}}^{\text{LiOH}} < {\text{K}}_{\text{D}}^{\text{NaOH}} < {\text{K}}_{\text{D}}^{\text{KOH}} \) results in the highest critical concentration of NaOH among all the MOH bases.

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology (2016YFA0400904, 2017YFA0402900), the External Cooperation Program of BIC, Chinese Academy of Sciences (211134KYSB20130017), Key Research Program of Chinese Academy of Sciences (KGZD-EW-T06)and the State Key Laboratory of Solidification Processing in NWPU (SKLSP201610).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21–29CrossRefGoogle Scholar
  2. 2.
    Bibes M, Barthélémy A (2008) Towards a magnetoelectric memory. Nat Mater 7:425–426CrossRefGoogle Scholar
  3. 3.
    Zhao H, Ren W, Yang Y, Iniguez J, Chen X, Bellaiche L (2014) Near room-temperature multiferroic materials with tunable ferromagnetic and electrical properties. Nat Commun 5:4021CrossRefGoogle Scholar
  4. 4.
    Aurivillius B (1949) Mixed bismuth oxides with layer lattices. The structure of BaBi4Ti4O15. Arkiv Kemi 3:519–4527Google Scholar
  5. 5.
    Aurivillius B, Fang P (1962) Ferroelectricity in the compound Ba2Bi4Ti5O18. PhysRev 126:893Google Scholar
  6. 6.
    Mao X, Wang W, Chen X, Lu Y (2009) Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics. Appl Phys Lett 95:082901CrossRefGoogle Scholar
  7. 7.
    Mao X, Sun H, Wang W, Chen X, Lu Y (2013) Ferromagnetic, ferroelectric properties, and magneto-dielectric effect of Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramics. Appl Phys Lett 102:072904CrossRefGoogle Scholar
  8. 8.
    Li J, Huang Y, Jin H, Rao G, Liang J, Tan X (2013) Inhomogeneous structure and magnetic properties of aurivillius ceramics Bi4Bin−3Ti3Fen−3O3n+3. J Am Ceram Soc 96:3920–3925CrossRefGoogle Scholar
  9. 9.
    Wang G, Huang Y, Sun S, Wang J, Peng R, Lu Y, Tan X (2016) Layer effects on the magnetic behaviors of aurivillius compounds Bin+1Fen−3Ti3O3n+1(n = 6, 7, 8, 9). J Am Ceram Soc 99:1318–1323CrossRefGoogle Scholar
  10. 10.
    Birenbaum AY, Ederer C (2014) Potentially multiferroic Aurivillius phase Bi5FeTi3O15: cation site preference, electric polarization, and magnetic coupling from first principles. Phys Rev B 90:214109CrossRefGoogle Scholar
  11. 11.
    Wang J, Fu Z, Peng R et al (2015) Low magnetic field response single-phase multiferroics under high temperature. Mater Horiz 2:232–236CrossRefGoogle Scholar
  12. 12.
    Zhao H, Cai K, Cheng Z et al (2017) A novel class of multiferroic material, Bi4Ti3O12·nBiFeO3 with localized magnetic ordering evaluated from their single crystals. Adv Electron Mater 3:1600254CrossRefGoogle Scholar
  13. 13.
    Yun Y, Zhai X, Ma C et al (2015) Growth of single-crystalline Bi6FeCoTi3O18 thin films and their magnetic–ferroelectric properties. Appl Phys Express 8:054001CrossRefGoogle Scholar
  14. 14.
    Kooriyattil S, Pavunny SP, Barrionuevo D, Katiyar RS (2014) Optical, ferroelectric, and piezoresponse force microscopy studies of pulsed laser deposited Aurivillius Bi5FeTi3O15 thin films. J Appl Phys 116:144101CrossRefGoogle Scholar
  15. 15.
    Sun S, Huang Y, Wang G, Wang J, Fu Z, Peng R, Knize RJ, Lu Y (2014) Nanoscale structural modulation and enhanced room-temperature multiferroic properties. Nanoscale 6:13494–13500CrossRefGoogle Scholar
  16. 16.
    Wang J, Li L, Peng R, Fu Z, Liu M, Lu Y, Tan X (2015) Structural evolution and multiferroics in sr-doped Bi7Fe1.5Co1.5Ti3O21 ceramics. J Am Ceram Soc 98:1528–1535CrossRefGoogle Scholar
  17. 17.
    Sun S, Wang W, Xu H, Zhou L, Shang M, Zhang L (2008) Bi5FeTi3O15 hierarchical microflowers: hydrothermal synthesis, growth mechanism, and associated visible-light-driven photocatalysis. J Phys Chem C 112:17835–17843CrossRefGoogle Scholar
  18. 18.
    Li X, Ju Z, Li F, Huang Y, Xie Y, Fu Z, Knize RJ, Lu Y (2014) Visible light responsive Bi7Fe3Ti3O21 nanoshelf photocatalysts with ferroelectricity and ferromagnetism. J Mater Chem A 2:13366CrossRefGoogle Scholar
  19. 19.
    Chen T, Li Z, Chen J, Ge W, Liu M, Lu Y (2016) Hydrothermal synthesis and formation mechanism of Aurivillius Bi5Fe0.9Co0.1Ti3O15 nanosheets. CrystEngComm 18:7449–7456CrossRefGoogle Scholar
  20. 20.
    Li Z, Chen T, Chen J, Sun D, Liu L, Liu M, Lu Y (2017) Morphology control of layered Bi11Fe2.8Co0.2Ti6O33 microcrystals: critical role of NaOH concentration and citric acid. CrystEngComm 19:7001–7008CrossRefGoogle Scholar
  21. 21.
    Park T, Papaefthymiou G, Viescas A, Moodenbaugh A, Wong S (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7:766–772CrossRefGoogle Scholar
  22. 22.
    Henrichs L, Cespedes O, Bennett J et al (2016) Multiferroic clusters: a new perspective for relaxor-type room-temperature multiferroics. Adv Funct Mater 26:2111–2121CrossRefGoogle Scholar
  23. 23.
    Chen T, Meng D, Li Z et al (2017) Intrinsic multiferroics in an individual single-crystalline Bi5Fe0.9Co0.1Ti3O15 nanoplate. Nanoscale 9:15291–15297CrossRefGoogle Scholar
  24. 24.
    Han J, Huang Y, Wu X et al (2006) Tunable synthesis of bismuth ferrites with various morphologies. Adv Mater 18:2145–2148CrossRefGoogle Scholar
  25. 25.
    Lomanova N, Gusarov V (2011) Phase states in the Bi4Ti3O12–BiFeO3 section in the Bi2O3–TiO2–Fe2O3 system. Russ J Org Chen 56:616–620Google Scholar
  26. 26.
    Wang Y, Xu G, Yang L et al (2007) Alkali metal ions-assisted controllable synthesis of bismuth ferrites by a hydrothermal method. J Am Ceram Soc 90:3673–3675CrossRefGoogle Scholar
  27. 27.
    Nippolainen E, Kamshilin A, Prokofiev V, Jaaskelainen T (2001) Combined formation of a self-pumped phase-conjugate mirror and spatial subharmonics in photorefractive sillenites. Appl Phys Lett 78:859–861CrossRefGoogle Scholar
  28. 28.
    Lencka M, Oledzka M, Riman RE (2000) Hydrothermal synthesis of sodium and potassium bismuth titanates. Chem Mater 12:1323–1330CrossRefGoogle Scholar
  29. 29.
    Zhong W, Luo H, Hua S, Xu G (2004) Anionic coordination polyhedron growth units and crystal morphology. J Synth Cryst 33:475–478Google Scholar
  30. 30.
    Viswanatha R, Amenitsch H, Sarma D (2007) Growth kinetics of ZnO nanocrystals: a few surprises. J Am Ceram Soc 129:4470–4475Google Scholar
  31. 31.
    Santra PK, Mukherjee S, Sarma D (2010) Growth kinetics of ZnO nanocrystals in the presence of a base: effect of the size of the alkali cation. J Phys Chem C 114:22113–22118CrossRefGoogle Scholar
  32. 32.
    Jartych E, Pikula T, Mazurek M et al (2013) Antiferromagnetic spin glass-like behavior in sintered multiferroic Aurivillius Bim+1Ti3Fem−3O3m+3 compounds. J Magn Magn Mater 342:27–34CrossRefGoogle Scholar
  33. 33.
    Jia T, Kimura H, Cheng Z et al (2017) Mechanical force involved multiple fields switching of both local ferroelectric and magnetic domain in a Bi5Ti3FeO15 thin film. NPG Asia Mater 9:e349CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Hefei National Laboratory for Physical Sciences at the MicroscaleHefeiPeople’s Republic of China
  3. 3.Synergetic Innovation Center of Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  4. 4.Hefei Physical Sciences and Technology CenterCAS Hefei Institutes of Physical SciencesHefeiPeople’s Republic of China
  5. 5.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations