Advertisement

Journal of Materials Science

, Volume 54, Issue 2, pp 1162–1170 | Cite as

Structural characterization of A-site nonstoichiometric (1 − x)Bi0.5Na0.5TiO3xBaTiO3 ceramics

  • Sasiporn Prasertpalichat
  • Theeranun Siritanon
  • Noppadon Nuntawong
  • David P. Cann
Ceramics
  • 260 Downloads

Abstract

Lead-free 1 − x(Bi0.5Na0.5TiO3)–xBaTiO3, x = 0.055, 0.06 and 0.07, ceramics [i.e., near the morphotropic phase boundary (MPB)] were modified by varying the A-site cation stoichiometry to induce acceptor and donor doping through the addition of excess Na and Bi, respectively. The role of A-site nonstoichiometry on the crystal structure was investigated by using Raman spectroscopy and high-energy X-ray diffraction (XRD) techniques. The Raman spectra were analyzed via spectral deconvolution, and the resultant fitted data demonstrated deviations in the dominant bands (at 200–400 cm−1 and 400–600 cm−1) which indicated a shift toward tetragonal distortions in all Na-excess samples. High-energy XRD data showed that all the characteristic peaks corresponding to tetragonal P4bm structure became more prominent in Na-excess sample. Rietveld refinement data confirmed the coexistence of rhombohedral (R3c) and tetragonal (P4bm) phases with a significant increase in P4bm phase fraction in Na-excess composition. The clear agreements between Raman spectroscopy and high-energy XRD data suggest that Bi-excess samples (i.e., donor doping) had little or no effect on crystal structure, whereas Na-excess samples (i.e., acceptor doping) had a significant influence on the structure near the MPB such that tetragonal distortions were induced in both the local structure and the long-range average structure.

Notes

Acknowledgements

This work was financial supported by faculty of science, Naresuan University. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Saito Y, Takao H, Tani T et al (2004) Lead-free piezoceramics. Nature 432:84–87CrossRefGoogle Scholar
  2. 2.
    Maeder MD, Damjanovic D, Setter N (2004) Lead free piezoelectric materials. J Electroceramics 13:385–392CrossRefGoogle Scholar
  3. 3.
    Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693–2700CrossRefGoogle Scholar
  4. 4.
    Rödel J, Jo W, Seifert KT et al (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177CrossRefGoogle Scholar
  5. 5.
    Xu C, Lin D, Kwok K (2008) Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sci 10:934–940CrossRefGoogle Scholar
  6. 6.
    Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30:2236–2239CrossRefGoogle Scholar
  7. 7.
    Acosta M, Zang J, Jo W, Rödel J (2012) High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics. J Eur Ceram Soc 32:4327–4334CrossRefGoogle Scholar
  8. 8.
    Zhang S-T, Kounga AB, Aulbach E et al (2008) Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 I. Structure and room temperature properties. J Appl Phys 103:034107CrossRefGoogle Scholar
  9. 9.
    Huang W, Yang J, Qin Y et al (2017) Room temperature multiferrocity and magnetodielectric properties of ternary (1 −  x)(0.94Bi0.5Na0.5TiO3–0.06BaTiO3)–xBiFeO3 (0 ≤ x ≤ 0.9) solid solutions. Appl Phys Lett 111:112902CrossRefGoogle Scholar
  10. 10.
    Li F, Chen G, Liu X et al (2017) Type-I pseudo-first-order phase transition induced electrocaloric effect in lead-free Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. Appl Phys Lett 110:182904CrossRefGoogle Scholar
  11. 11.
    Ma C, Tan X, Dul’Kin E, Roth M (2010) Domain structure-dielectric property relationship in lead-free (1 −  x)(Bi1/2Na1/2)TiO3–xBaTiO3 ceramics. J Appl Phys 108:104105CrossRefGoogle Scholar
  12. 12.
    Ma C, Tan X (2010) Phase diagram of unpoled lead-free-ceramics. Solid State Commun 150:1497–1500CrossRefGoogle Scholar
  13. 13.
    Ranjan R, Dviwedi A (2005) Structure and dielectric properties of (Na0.50Bi0.50)1 −  x BaxTiO3: 0 ≤ x ≤ 0.10. Solid State Commun 135:394–399CrossRefGoogle Scholar
  14. 14.
    Zhang S-T, Kounga AB, Aulbach E et al (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906CrossRefGoogle Scholar
  15. 15.
    Daniels JE, Jo W, Rödel J, Jones JL (2009) Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: case study in a 93%(Bi0.5Na0.5)TiO3–7% BaTiO3 piezoelectric ceramic. Appl Phys Lett 95:032904CrossRefGoogle Scholar
  16. 16.
    Simons H, Daniels J, Jo W et al (2011) Electric-field-induced strain mechanisms in lead-free 94%(Bi1/2Na1/2)TiO3–6%BaTiO3. Appl Phys Lett 98:082901CrossRefGoogle Scholar
  17. 17.
    Sundari SS, Kumar B, Dhanasekaran R (2013) Structural, dielectric, piezoelectric and ferroelectric characterization of NBT-BT lead-free piezoelectric ceramics. In IOP Conference Series: Materials Science and Engineering, vol. 43, no. 1. IOP Publishing, p 012010Google Scholar
  18. 18.
    Jo W, Daniels JE, Jones JL et al (2011) Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics. J Appl Phys 109:014110CrossRefGoogle Scholar
  19. 19.
    Ge W, Luo C, Zhang Q et al (2014) Evolution of structure in Na0.5Bi0.5TiO3 single crystals with BaTiO3. Appl Phys Lett 105:162913CrossRefGoogle Scholar
  20. 20.
    Ma C, Guo H, Beckman SP, Tan X (2012) Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3−BaTiO3 piezoelectrics. Phys Rev Lett 109:107602CrossRefGoogle Scholar
  21. 21.
    McQuade RR, Dolgos MR (2016) A review of the structure-property relationships in lead-free piezoelectric (1 −  x)Na0.5Bi0.5TiO3–(x)BaTiO3. J Solid State Chem 242:140–147CrossRefGoogle Scholar
  22. 22.
    Zuo R, Su S, Wu Y et al (2008) Influence of A-site nonstoichiometry on sintering, microstructure and electrical properties of (Bi0.5Na0.5)TiO3 ceramics. Mater Chem Phys 110:311–315CrossRefGoogle Scholar
  23. 23.
    Hiruma Y, Nagata H, Takenaka T (2009) Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J Appl Phys 105:084112CrossRefGoogle Scholar
  24. 24.
    Wang X, Tang X, Kwok K et al (2005) Effect of excess Bi2O3 on the electrical properties and microstructure of (Bi1/2Na1/2)TiO3 ceramics. Appl Phys A 80:1071–1075CrossRefGoogle Scholar
  25. 25.
    Sung Y, Kim J, Cho J et al (2010) Effects of Na nonstoichiometry in (Bi0.5Na0.5+x)TiO3 ceramics. Appl Phys Lett 96:022901CrossRefGoogle Scholar
  26. 26.
    Li M, Pietrowski MJ, De Souza RA et al (2014) A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater 13:31–35CrossRefGoogle Scholar
  27. 27.
    Li M, Zhang H, Cook SN et al (2015) Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem Mater 27:629–634CrossRefGoogle Scholar
  28. 28.
    Xu Q, Huang Y-H, Chen M et al (2008) Effect of bismuth deficiency on structure and electrical properties of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics. J Phys Chem Solids 69:1996–2003CrossRefGoogle Scholar
  29. 29.
    Prasertpalichat S, Cann DP (2016) Hardening in non-stoichiometric (1 −  x)Bi0.5Na0.5TiO3–xBaTiO3 lead-free piezoelectric ceramics. J Mater Sci 51:476–486.  https://doi.org/10.1007/s10853-015-9235-2 CrossRefGoogle Scholar
  30. 30.
    Chen X, Ma H, Pan W et al (2012) Microstructure, dielectric and ferroelectric properties of (NaxBi0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics: effect of Na nonstoichiometry. Mater Chem Phys 132:368–374CrossRefGoogle Scholar
  31. 31.
    Frantti J, Lantto V, Lappalainen J (1996) Symmetry consideration of Raman modes in Nd-doped lead zirconate titanate thin films for structure characterization. J Appl Phys 79:1065–1072CrossRefGoogle Scholar
  32. 32.
    Rout D, Moon K-S, Rao VS, Kang S-JL (2009) Study of the morphotropic phase boundary in the lead-free Na1/2Bi1/2TiO3–BaTiO3 system by Raman spectroscopy. J Ceram Soc Jpn 117:797–800CrossRefGoogle Scholar
  33. 33.
    Kreisel J, Glazer A, Jones G et al (2000) An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1 −  xKx)0.5Bi0.5TiO3 (0 ≤ x≤1) solid solution. J Phys Condens Matter 12:3267–3280CrossRefGoogle Scholar
  34. 34.
    Petzelt J, Kamba S, Fabry J et al (2004) Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3. J Phys Condens Matter 16:2719–2731CrossRefGoogle Scholar
  35. 35.
    Zhang M-S, Scott J, Zvirgzds J (1986) Raman spectroscopy of Na0.5Bi0.5TiO3. Ferroelectr Lett Sect 6:147–152CrossRefGoogle Scholar
  36. 36.
    Denisov V, Ivlev A, Lipin A et al (1997) Raman spectra and lattice dynamics of single-crystal. J Phys Condens Matter 9:4967–4978CrossRefGoogle Scholar
  37. 37.
    Lidjici H, Lagoun B, Berrahal M et al (2015) XRD, Raman and electrical studies on the (1 −  x)(Na0.5Bi0.5)TiO3−xBaTiO3 lead free ceramics. J Alloys Compd 618:643–648CrossRefGoogle Scholar
  38. 38.
    Suchanicz J, Jankowska-Sumara I, Kruzina TV et al (2011) Raman and infrared spectroscopy of Na0.5Bi0.5TiO3–BaTiO3 ceramics. J Electroceramics 27:45–50CrossRefGoogle Scholar
  39. 39.
    Tarte P, Rulmont A, Liégeois-Duyckaerts M et al (1990) Vibrational spectroscopy and solid state chemistry. Solid State Ion 42:177–196CrossRefGoogle Scholar
  40. 40.
    Tarte P (1967) Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim Acta Part Mol Spectrosc 23:2127–2143CrossRefGoogle Scholar
  41. 41.
    Kreisel J, Lucazeau G, Vincent H (1998) Raman spectra and vibrational analysis of BaFe12O19 hexagonal ferrite. J Solid State Chem 137:127–137CrossRefGoogle Scholar
  42. 42.
    Viola G, McKinnon R, Koval V et al (2014) Lithium-induced phase transitions in lead-free Bi0.5Na0.5TiO3 based ceramics. J Phys Chem C 118:8564–8570CrossRefGoogle Scholar
  43. 43.
    Xu Q, Liu H, Zhang L et al (2016) Structure and electrical properties of lead-free Bi0.5Na 0.5TiO3-based ceramics for energy-storage applications. RSC Adv 6:59280–59291CrossRefGoogle Scholar
  44. 44.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767CrossRefGoogle Scholar
  45. 45.
    Jeong I-K, Ahn J, Kim B et al (2011) Short-and medium-range structure of multiferroic Pb (Fe1/2Nb1/2)O3 studied using neutron total scattering analysis. Phys Rev B 83:064108CrossRefGoogle Scholar
  46. 46.
    Jeong I-K, Sung Y, Song T et al (2015) Structural evolution of bismuth sodium titanate induced by A-site non-stoichiometry: neutron powder diffraction studies. J Korean Phys Soc 67:1583–1587CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceNaresuan UniversityPhitsanulokThailand
  2. 2.Research Center for Academic Excellent in Applied Physics, Faculty of ScienceNaresuan UniversityPhitsanulokThailand
  3. 3.School of Chemistry, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand
  4. 4.National Electronics and Computer Technology CenterPathumthaniThailand
  5. 5.Materials Science, School of Mechanical Industrial and Manufacturing EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations