Advertisement

Journal of Materials Science

, Volume 54, Issue 2, pp 1831–1843 | Cite as

Interpreting slip transmission through mechanically induced interface energies: a Fe–3%Si case study

  • K. E. AifantisEmail author
  • H. Deng
  • H. Shibata
  • S. TsurekawaEmail author
  • P. Lejček
  • S. A. Hackney
Metals

Abstract

Nanoindentation experiments are performed at the vicinity of grain boundaries, in Fe–Si tricrystals, to illustrate the existence of a critical stress at which slip transmission occurs across grain boundaries. Such a critical stress can be considered as a grain boundary yield stress and can be quantified within the framework of conventional gradient plasticity theory, enhanced by introducing a new mechanically induced “interface energy” term. The present study takes a first step in trying to provide a physical interpretation for this “far from thermodynamic equilibrium” interface energy term by conducting nanoindentation tests in three Fe–3wt%Si tricrystals, each of which had three distinct types of grain boundary misorientations, namely 22.5°, 42.0° and 44.6°. By relating the experimentally measured grain boundary yield stress to the predictions of interfacial gradient plasticity, it is possible to determine the interface parameter (\( \xi \)), which provides a measure of the resistance to slip transmission for each grain boundary examined. In particular, microscopic arguments from standard dislocation theory reveal that \( \xi \) depends on both the grain interior properties and the grain boundary structure. The internal length is shown to depend on multiple characteristic lengths of the microstructure, while a new expression is deduced for relating the Hall-Petch slope to both the interface parameter and internal length.

Notes

Acknowledgements

KEA, HD and SAH are grateful for the financial support from the US Department of Energy Office of Basic Energy Sciences under Grant Nos. DE-SC0016306 and DE-SC0017715. HS and ST would like to acknowledge support form the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 16H06366. PL would like to acknowledge the support from the Czech Science Foundation (Grant No. P108/12/G043).

References

  1. 1.
    Lee TC, Robertson IM, Birnbaum HK (1990) TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A 62:131–153CrossRefGoogle Scholar
  2. 2.
    Lee TC, Robertson IM, Birnbaum HK (1992) Interaction of dislocations with grain boundaries in Ni3Al. Acta Metall Mater 40:2569–2579CrossRefGoogle Scholar
  3. 3.
    Kacher J, Robertson IM (2014) In situ and tomographic analysis of dislocation/grain boundary interactions in α-titanium. Philos Mag 94:814–829CrossRefGoogle Scholar
  4. 4.
    Xu S, Xiong L, Chen Y, McDowell DL (2016) Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in fcc metals: a concurrent atomistic-continuum study. npj Comput Mater 2:15016CrossRefGoogle Scholar
  5. 5.
    Spearot DE, Sangid MD (2014) Insights on slip transmission at grain boundaries from atomistic simulations. Curr Opin Solid State Mater Sci 18:188–195CrossRefGoogle Scholar
  6. 6.
    Gao Y, Zhuang Z, You XC (2011) A hierarchical dislocation-grain boundary interaction model based on 3D discrete dislocation dynamics and molecular dynamics. Sci China Phys Mech Astron 54:625–632CrossRefGoogle Scholar
  7. 7.
    Liu J (2013) Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal. AIP Conf Proc 1532(2013):345CrossRefGoogle Scholar
  8. 8.
    Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol Trans ASME 106:326–330CrossRefGoogle Scholar
  9. 9.
    Aifantis EC (2009) Exploring the applicability of gradient elasticity to certain micro/nano reliability problems. Microsyst Technol 15:109–115CrossRefGoogle Scholar
  10. 10.
    Tsagrakis I, Efremidis G, Konstantinidis A, Aifantis EC (2006) Deformation vs. flow and wavelet-based models of gradient plasticity: examples of axial symmetry. Int J Plast 22:1456–1485CrossRefGoogle Scholar
  11. 11.
    Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487CrossRefGoogle Scholar
  12. 12.
    Aifantis KE, Willis JR (2004) Interfacial jump conditions in strain-gradient plasticity and relations of Hall–Petch type. In: Proc. nat. congr. mech (June 24–26 Chania/Greece), vol 7, pp 372–376Google Scholar
  13. 13.
    Aifantis KE, Willis JR (2005) The role of interfaces in enhancing the yield strength of composites and polycrystals. J Mech Phys Solids 53:1047–1070CrossRefGoogle Scholar
  14. 14.
    Aifantis KE, Soer WA, De Hosson JTM, Willis JR (2006) Interfaces within strain gradient plasticity: theory and experiments. Acta Mater 54:5077–5085CrossRefGoogle Scholar
  15. 15.
    Gudmundson P (2004) A unified treatment of strain gradient plasticity. J Mech Phys Solids 52:1379–1406CrossRefGoogle Scholar
  16. 16.
    Bayerschen E, Stricker M, Wulfinghoff S, Weygand D, Böhlke T (2015) Equivalent plastic strain gradient plasticity with grain boundary hardening and comparison to discrete dislocation dynamics. Proc R Soc A 471(2184):20150388CrossRefGoogle Scholar
  17. 17.
    Erdle H, Böhlke T (2017) A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip. Comput Mech 60:923–942CrossRefGoogle Scholar
  18. 18.
    Wulfinghoff S, Bayerschen E, Böhlke T (2013) A gradient plasticity grain boundary yield theory. Int J Plast 51:33–46CrossRefGoogle Scholar
  19. 19.
    Aifantis KE, Konstantinidis AA (2009) Hall-Petch revisited at the nanoscale. Mater Sci Eng B 163:139–144CrossRefGoogle Scholar
  20. 20.
    Zhang X, Aifantis KE (2011) Interpreting the softening of nanomaterials through gradient plasticity. J Mater Res 26:1399–1405CrossRefGoogle Scholar
  21. 21.
    Zhang X, Aifantis KE, Ngan AHW (2014) Interpreting the stress–strain response of Al micropillars through gradient plasticity. Mater Sci Eng A 591:38–45CrossRefGoogle Scholar
  22. 22.
    Gerberich WW, Nelson JC, Lilleodden ET, Anderson P, Wyrobek JT (1996) Indentation induced dislocation nucleation: the initial yield point. Acta Mater 44:3585–3598CrossRefGoogle Scholar
  23. 23.
    Soer WA, De Hosson JThM (2005) Detection of grain-boundary resistance to slip transfer using nanoindentation. Mater Lett 59:24–25CrossRefGoogle Scholar
  24. 24.
    Aifantis KE, Ngan AHW (2007) Modeling dislocation—grain boundary interactions through gradient plasticity and nanoindentation. Mater Sci Eng A 459:251–261CrossRefGoogle Scholar
  25. 25.
    Tsurekawa S, Chihara Y, Tashima K, Ii S, Lejcek P (2014) Local plastic deformation in the vicinity of grain boundaries in Fe–3 mass% Si alloy bicrystals and tricrystal. J Mater Sci 49:4698–4704.  https://doi.org/10.1007/s10853-014-8150-2 CrossRefGoogle Scholar
  26. 26.
    Ohmura T, Tsuzaki K, Yin F (2005) Nanoindentation-induced deformation behavior in the vicinity of single grain boundary of interstitial-free steel. Mater Trans 46:2026–2029CrossRefGoogle Scholar
  27. 27.
    Wang MG, Ngan AHW (2004) Indentation strain burst phenomenon induced by grain boundaries in niobium. J Mater Res 19:2478–2486CrossRefGoogle Scholar
  28. 28.
    Lejček P, Hofmann S, Paidar V (2003) Solute segregation and classification of [1 0 0 0] tilt grain boundaries in α-iron: consequences for grain boundary engineering. Acta Mater 51:3951–3963CrossRefGoogle Scholar
  29. 29.
    Soer WA, Aifantis KE, De Hosson JThM (2005) Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater 53:4665–4676CrossRefGoogle Scholar
  30. 30.
    Zhang X, Aifantis KE (2015) Examining the evolution of the internal length as a function of plastic strain. Mater Sci Eng A 631:27–32CrossRefGoogle Scholar
  31. 31.
    Zhang X, Aifantis KE, Senger J, Weygand D, Zaiser M (2014) Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: how do they relate to the dislocation microstructure? J Mater Res 29:2116–2128CrossRefGoogle Scholar
  32. 32.
    Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag 21:399–424CrossRefGoogle Scholar
  33. 33.
    Livingston JD, Chalmers B (1957) Multiple slip in bicrystal deformation Glissement multiple dans la déformation d’un bickistalMehrfachgleitung bei der verformung von bikristallen. Acta Metall 5:322–327CrossRefGoogle Scholar
  34. 34.
    Shen Z, Wagoner RH, Clark WAT (1986) Dislocation pile-up and grain boundary interactions in 304 stainless steel. Scr Metall 20:921–926CrossRefGoogle Scholar
  35. 35.
    Lee TC, Robertson IM, Birnbaum HK (1989) Prediction of slip transfer mechanisms across grain boundaries. Scr Metall 23:799–803CrossRefGoogle Scholar
  36. 36.
    Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59:283–296CrossRefGoogle Scholar
  37. 37.
    Abuzaida W, Sangid MD, Sehitoglu H, Carroll J, Lambros J (2012) The role of slip transmission on plastic strain accumulation across grain boundaries. Procedia IUTAM 4:169–178CrossRefGoogle Scholar
  38. 38.
    Sangid MD, Ezaz T, Sehitoglu H (2012) Energetics of residual dislocations associated with slip–twin and slip–GBs interactions. Mater Sci Eng A 542:21–30CrossRefGoogle Scholar
  39. 39.
    de Koning M, Miller R, Bulatov VV, Abraham FF (2002) Modelling grain-boundary resistance in intergranular dislocation slip transmission. Philos Mag A 82(202):2511–2527CrossRefGoogle Scholar
  40. 40.
    Smith D (1982) Interactions of dislocations with grain boundaries. J Phys Colloq 43:C6-225–C6-237CrossRefGoogle Scholar
  41. 41.
    Spearot DE, Tschopp MA, Jacob KI, McDowell DL (2007) Tensile strength of  <100> and  <110> tilt bicrystal copper interfaces. Acta Mater 55:705–714CrossRefGoogle Scholar
  42. 42.
    Sangid MD, Ezaz T, Sehitoglu H (2012) Energetics of residual dislocations associated with slip-twin and slip-GBs interactions. Mater Sci Eng A 542:21–30CrossRefGoogle Scholar
  43. 43.
    Rice JR (1992) Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids 40:239–271CrossRefGoogle Scholar
  44. 44.
    Tschopp MA, Tucker GJ, McDowell DL (2007) Atomistic simulations of free volume in < 100 > and < 110 > symmetric tilt grain boundaries in Cu and Al. Plasticity From the Atomic Scale to Constitutive Laws, TMS Annual Meeting 2007, pp 33–42Google Scholar
  45. 45.
    Tucker GJ, Tschopp MA, McDowell DL (2010) Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation. Acta Mater 58:6464–6473CrossRefGoogle Scholar
  46. 46.
    Friedel J (1964) Dislocations. Pergamon press, Oxford, pp 260–263Google Scholar
  47. 47.
    Weertman J, Weertman JR (1992) Elementary dislocation theory. Oxford University Press Inc, New York, pp 126–130Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Civil Engineering–Engineering MechanicsUniversity of ArizonaTucsonUSA
  3. 3.Department of Materials Science and EngineeringKumamoto UniversityKumamotoJapan
  4. 4.Structural Materials, Division of Materials Science and Chemistry, Faculty of Advanced Science and TechnologyKumamoto UniversityKumamotoJapan
  5. 5.Institute of PhysicsCzech Academy of SciencesPragueCzech Republic
  6. 6.Materials Science and EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations