Journal of Materials Science

, Volume 54, Issue 2, pp 1452–1461 | Cite as

Structural and dielectric properties of ion beam deposited titanium oxynitride thin films

  • Liuwei Jia
  • Huiping Lu
  • Yujing Ran
  • Shujun Zhao
  • Haonan Liu
  • Yinglan Li
  • Zhaotan Jiang
  • Zhi Wang
Electronic materials


Titanium oxynitride (\({\hbox {TiO}}_{x}{\hbox {N}}_{y}\)) thin films were fabricated by ion beam-assisted sputtering deposition. Effects of oxygen contribution, assisting ion energy (\(E_{\mathrm{a}}\)), assisting ion beam current (\(I_{\mathrm{a}}\)) on the microstructure and dielectric behavior of the films were analyzed. The results show that increasing O content made the films to turn from fcc-TiN (111)-oriented to fcc \({\hbox {TiO}}_{x}{{\hbox {N}}}_{y}\) (220)-oriented. Proper \(E_{\mathrm{a}}\) and low \(I_{\mathrm{a}}\) can enhance the (220) orientation in \({\hbox {TiO}}_{x}{{\hbox {N}}}_{y}\) thin films. The increase in oxygen content leads to the red-shift of plasmonic resonant frequency and makes the films more dielectric. Higher \(E_{\mathrm{a}}\) and \(I_{\mathrm{a}}\) make the \({\hbox {TiO}}_{x}{{\hbox {N}}}_{y}\) films more metallic. Atomic composition is an important factor underlying the results. The study provides a method to control the plasmonic properties of oxynitride films in a wide range by atomic composition and assisting ions.



The research is financially supported by National Natural Science Foundation of China (Project 51002010 and Project 11274040). We thank Dr. Xianfeng-Zhang for spectroscopic ellipsometry measurement.


  1. 1.
    Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25:3264–3294CrossRefGoogle Scholar
  2. 2.
    Patsalas P, Kalfagiannis N, Kassavetis S, Abadias G, Bellas DV (2018) Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Mater Sci Eng R 123:1–55CrossRefGoogle Scholar
  3. 3.
    Giannini V, Fernndezdomnguez AI, Heck SC, Maier SA (2011) Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 111:3888–3912CrossRefGoogle Scholar
  4. 4.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  5. 5.
    Boltasseva A, Naik GV, Kim J (2011) Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Mater Express 1:1090–1099CrossRefGoogle Scholar
  6. 6.
    Capretti A, Negro LD, Wang Y (2015) Wide tuning of the optical and structural properties of alternative plasmonic materials. Opt Mater Express 5:2415–2430CrossRefGoogle Scholar
  7. 7.
    Bazioti C, Dimitrakopulos GP, Kehagias T, Komninou P, Siozios A (2014) Influence of laser annealing on the structural properties of sputtered AlN: Ag plasmonic nanocomposites. J Mater Sci 49:3996–4006. CrossRefGoogle Scholar
  8. 8.
    Garbrecht M, Hultman L, Fawey MH, Sands TD, Saha B (2018) Tailoring of surface plasmon resonances in TiN/(Al0.72Sc0.28)N multilayers by dielectric layer thickness variation. J Mater Sci 53:4001–4009. CrossRefGoogle Scholar
  9. 9.
    Patsalas P, Kalfagiannis N, Kassavetis S (2015) Optical properties and plasmonic performance of titanium nitride. Materials 8:3128–3154CrossRefGoogle Scholar
  10. 10.
    He W, Ai K, Jiang C, Li Y, Song X (2017) Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy. Biomaterials 132:37–47CrossRefGoogle Scholar
  11. 11.
    Musil J (2000) Hard and superhard nanocomposite coatings. Surf Coat Technol 125:322–330CrossRefGoogle Scholar
  12. 12.
    Patsalas P, Charitidis C, Logothetidis S (2000) the effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films. Surf Coat Technol 125:335–340CrossRefGoogle Scholar
  13. 13.
    Zhou J, Wang Y, Zhang L, Li X (2018) Plasmonic biosensing based on non-noble-metal materials. Chin Chem Lett 29:54–60CrossRefGoogle Scholar
  14. 14.
    Liu YX, Matsukawa T, Endo K, Masahrara M, O’Uchi S (2007) Fin-height controlled TiN-gate FinFET CMOS based on experimental mobility. Microelectron Eng 84:2101–2104CrossRefGoogle Scholar
  15. 15.
    Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD (2012) Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2:478–489CrossRefGoogle Scholar
  16. 16.
    El-Saeed AH, Allam NK (2018) Refractory plasmonics: orientation-dependent plasmonic coupling in TiN and ZrN nanocubes. Phys Chem Chem Phys 20:1881–1888CrossRefGoogle Scholar
  17. 17.
    Kassavetis S, Bellas DV, Abadias G, Lidorikis E, Patsalas P (2016) Plasmonic spectral tunability of conductive ternary nitrides. Appl Phys Lett 108:263110CrossRefGoogle Scholar
  18. 18.
    Catellani A, Calzolari A (2017) Plasmonic properties of refractory titanium nitride. Phys Rev B 95:115145CrossRefGoogle Scholar
  19. 19.
    Kot M, Łobaza J, Naumann F, Gargouri H, Henkel K, Schmeißer D (2018) Long-term ambient surface oxidation of titanium oxynitride films prepared by plasma-enhanced atomic layer deposition: An XPS study. J Vac Sci Technol A 36(1):01A114CrossRefGoogle Scholar
  20. 20.
    Henkel K, Das C, Kot M, Schmeißer D, Naumann F, Karkkanen I, Gargouri H (2017) In-gap states in titanium dioxide and oxynitride atomic layer deposited films. J Vac Sci Technol A 35(1):01B135CrossRefGoogle Scholar
  21. 21.
    Sowinska M, Henkel K, Schmeißer D, Karkkanen I, Schneidewind J, Naumann F, Gruska B, Gargouri H (2016) Plasma-enhanced atomic layer deposition of titanium oxynitrides films: a comparative spectroscopic and electrical study. J Vac Sci Technol A 34(1):01A127CrossRefGoogle Scholar
  22. 22.
    Kot M, Henkel K, Das C, Brizzi S, Karkkanen I, Schneidewind J, Naumann F, Gargouri H, Schmeißer D (2017) Analysis of titanium species in titanium oxynitride films prepared by plasma enhanced atomic layer deposition. Surf Coat Technol 324:586–593CrossRefGoogle Scholar
  23. 23.
    Braic L, Vasilantonakis N, Mihai A, Garcia IJV, Fearn S (2017) Titanium oxynitride thin films with tunable double epsilon-near-zero behavior for nanophotonic applications. ACS Appl Mater Interfaces 9:29857–29862CrossRefGoogle Scholar
  24. 24.
    Saleem S, Ahmad R, Ikhlaq U, Ayubc R, Hong JW, Zhen XR, Hui LP, Abbas K, Chu PK (2015) Effects of \(\text{ N }_{2}/\text{ O }_{2}\) flow rate on the surface properties and biocompatibility of nano-structured \(\text{ TiO }_{x}\text{ N }_{y}\) thin films prepared by high vacuum magnetron sputtering. Chin Phys B 24:075202CrossRefGoogle Scholar
  25. 25.
    Zhang LA, Liu HN, Suo XX, Tong S, Li YL, Jiang ZT, Wang Z (2016) Plasmonic properties of titanium nitride thin films prepared by ion beam assisted deposition. Mater Lett 185:295–298CrossRefGoogle Scholar
  26. 26.
    Zhang LA, Tong S, Liu HN, Li YL, Wang Z (2016) Effects of sputtering and assisting ions on the orientation of titanium nitride films fabricated by ion beam assisted sputtering deposition from metal target. Mater Lett 171:304–307CrossRefGoogle Scholar
  27. 27.
    NIST Chemistry WebBook, SRD 69.
  28. 28.
    Zhang JP, Zhang LD, Zhu LQ, Zhang Y, Liu M, Wang XJ (2007) Characterization of ZnO: N films prepared by annealing sputtered zinc oxynitride films at different temperatures. J Appl Phys 102:114903CrossRefGoogle Scholar
  29. 29.
    Viezbicke BD, Patel S, Davis BE, Birnie DP (2015) Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys Status Solidi B 252(8):1700–1710CrossRefGoogle Scholar
  30. 30.
    Dell’ Anna L, Merano M (2016) Clausius–Mossotti Lorentz–Lorenz relations and retardation effects for two-dimensional crystals. Phys Rev A 93:053808CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations