Advertisement

Journal of Materials Science

, Volume 54, Issue 2, pp 1452–1461 | Cite as

Structural and dielectric properties of ion beam deposited titanium oxynitride thin films

  • Liuwei Jia
  • Huiping Lu
  • Yujing Ran
  • Shujun Zhao
  • Haonan Liu
  • Yinglan Li
  • Zhaotan Jiang
  • Zhi Wang
Electronic materials

Abstract

Titanium oxynitride (\({\hbox {TiO}}_{x}{\hbox {N}}_{y}\)) thin films were fabricated by ion beam-assisted sputtering deposition. Effects of oxygen contribution, assisting ion energy (\(E_{\mathrm{a}}\)), assisting ion beam current (\(I_{\mathrm{a}}\)) on the microstructure and dielectric behavior of the films were analyzed. The results show that increasing O content made the films to turn from fcc-TiN (111)-oriented to fcc \({\hbox {TiO}}_{x}{{\hbox {N}}}_{y}\) (220)-oriented. Proper \(E_{\mathrm{a}}\) and low \(I_{\mathrm{a}}\) can enhance the (220) orientation in \({\hbox {TiO}}_{x}{{\hbox {N}}}_{y}\) thin films. The increase in oxygen content leads to the red-shift of plasmonic resonant frequency and makes the films more dielectric. Higher \(E_{\mathrm{a}}\) and \(I_{\mathrm{a}}\) make the \({\hbox {TiO}}_{x}{{\hbox {N}}}_{y}\) films more metallic. Atomic composition is an important factor underlying the results. The study provides a method to control the plasmonic properties of oxynitride films in a wide range by atomic composition and assisting ions.

Notes

Acknowledgements

The research is financially supported by National Natural Science Foundation of China (Project 51002010 and Project 11274040). We thank Dr. Xianfeng-Zhang for spectroscopic ellipsometry measurement.

References

  1. 1.
    Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25:3264–3294CrossRefGoogle Scholar
  2. 2.
    Patsalas P, Kalfagiannis N, Kassavetis S, Abadias G, Bellas DV (2018) Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Mater Sci Eng R 123:1–55CrossRefGoogle Scholar
  3. 3.
    Giannini V, Fernndezdomnguez AI, Heck SC, Maier SA (2011) Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 111:3888–3912CrossRefGoogle Scholar
  4. 4.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  5. 5.
    Boltasseva A, Naik GV, Kim J (2011) Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Mater Express 1:1090–1099CrossRefGoogle Scholar
  6. 6.
    Capretti A, Negro LD, Wang Y (2015) Wide tuning of the optical and structural properties of alternative plasmonic materials. Opt Mater Express 5:2415–2430CrossRefGoogle Scholar
  7. 7.
    Bazioti C, Dimitrakopulos GP, Kehagias T, Komninou P, Siozios A (2014) Influence of laser annealing on the structural properties of sputtered AlN: Ag plasmonic nanocomposites. J Mater Sci 49:3996–4006.  https://doi.org/10.1007/s10853-014-8044-3 CrossRefGoogle Scholar
  8. 8.
    Garbrecht M, Hultman L, Fawey MH, Sands TD, Saha B (2018) Tailoring of surface plasmon resonances in TiN/(Al0.72Sc0.28)N multilayers by dielectric layer thickness variation. J Mater Sci 53:4001–4009.  https://doi.org/10.1007/s10853-017-1837-4 CrossRefGoogle Scholar
  9. 9.
    Patsalas P, Kalfagiannis N, Kassavetis S (2015) Optical properties and plasmonic performance of titanium nitride. Materials 8:3128–3154CrossRefGoogle Scholar
  10. 10.
    He W, Ai K, Jiang C, Li Y, Song X (2017) Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy. Biomaterials 132:37–47CrossRefGoogle Scholar
  11. 11.
    Musil J (2000) Hard and superhard nanocomposite coatings. Surf Coat Technol 125:322–330CrossRefGoogle Scholar
  12. 12.
    Patsalas P, Charitidis C, Logothetidis S (2000) the effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films. Surf Coat Technol 125:335–340CrossRefGoogle Scholar
  13. 13.
    Zhou J, Wang Y, Zhang L, Li X (2018) Plasmonic biosensing based on non-noble-metal materials. Chin Chem Lett 29:54–60CrossRefGoogle Scholar
  14. 14.
    Liu YX, Matsukawa T, Endo K, Masahrara M, O’Uchi S (2007) Fin-height controlled TiN-gate FinFET CMOS based on experimental mobility. Microelectron Eng 84:2101–2104CrossRefGoogle Scholar
  15. 15.
    Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD (2012) Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2:478–489CrossRefGoogle Scholar
  16. 16.
    El-Saeed AH, Allam NK (2018) Refractory plasmonics: orientation-dependent plasmonic coupling in TiN and ZrN nanocubes. Phys Chem Chem Phys 20:1881–1888CrossRefGoogle Scholar
  17. 17.
    Kassavetis S, Bellas DV, Abadias G, Lidorikis E, Patsalas P (2016) Plasmonic spectral tunability of conductive ternary nitrides. Appl Phys Lett 108:263110CrossRefGoogle Scholar
  18. 18.
    Catellani A, Calzolari A (2017) Plasmonic properties of refractory titanium nitride. Phys Rev B 95:115145CrossRefGoogle Scholar
  19. 19.
    Kot M, Łobaza J, Naumann F, Gargouri H, Henkel K, Schmeißer D (2018) Long-term ambient surface oxidation of titanium oxynitride films prepared by plasma-enhanced atomic layer deposition: An XPS study. J Vac Sci Technol A 36(1):01A114CrossRefGoogle Scholar
  20. 20.
    Henkel K, Das C, Kot M, Schmeißer D, Naumann F, Karkkanen I, Gargouri H (2017) In-gap states in titanium dioxide and oxynitride atomic layer deposited films. J Vac Sci Technol A 35(1):01B135CrossRefGoogle Scholar
  21. 21.
    Sowinska M, Henkel K, Schmeißer D, Karkkanen I, Schneidewind J, Naumann F, Gruska B, Gargouri H (2016) Plasma-enhanced atomic layer deposition of titanium oxynitrides films: a comparative spectroscopic and electrical study. J Vac Sci Technol A 34(1):01A127CrossRefGoogle Scholar
  22. 22.
    Kot M, Henkel K, Das C, Brizzi S, Karkkanen I, Schneidewind J, Naumann F, Gargouri H, Schmeißer D (2017) Analysis of titanium species in titanium oxynitride films prepared by plasma enhanced atomic layer deposition. Surf Coat Technol 324:586–593CrossRefGoogle Scholar
  23. 23.
    Braic L, Vasilantonakis N, Mihai A, Garcia IJV, Fearn S (2017) Titanium oxynitride thin films with tunable double epsilon-near-zero behavior for nanophotonic applications. ACS Appl Mater Interfaces 9:29857–29862CrossRefGoogle Scholar
  24. 24.
    Saleem S, Ahmad R, Ikhlaq U, Ayubc R, Hong JW, Zhen XR, Hui LP, Abbas K, Chu PK (2015) Effects of \(\text{ N }_{2}/\text{ O }_{2}\) flow rate on the surface properties and biocompatibility of nano-structured \(\text{ TiO }_{x}\text{ N }_{y}\) thin films prepared by high vacuum magnetron sputtering. Chin Phys B 24:075202CrossRefGoogle Scholar
  25. 25.
    Zhang LA, Liu HN, Suo XX, Tong S, Li YL, Jiang ZT, Wang Z (2016) Plasmonic properties of titanium nitride thin films prepared by ion beam assisted deposition. Mater Lett 185:295–298CrossRefGoogle Scholar
  26. 26.
    Zhang LA, Tong S, Liu HN, Li YL, Wang Z (2016) Effects of sputtering and assisting ions on the orientation of titanium nitride films fabricated by ion beam assisted sputtering deposition from metal target. Mater Lett 171:304–307CrossRefGoogle Scholar
  27. 27.
    NIST Chemistry WebBook, SRD 69. https://webbook.nist.gov/chemistry/
  28. 28.
    Zhang JP, Zhang LD, Zhu LQ, Zhang Y, Liu M, Wang XJ (2007) Characterization of ZnO: N films prepared by annealing sputtered zinc oxynitride films at different temperatures. J Appl Phys 102:114903CrossRefGoogle Scholar
  29. 29.
    Viezbicke BD, Patel S, Davis BE, Birnie DP (2015) Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys Status Solidi B 252(8):1700–1710CrossRefGoogle Scholar
  30. 30.
    Dell’ Anna L, Merano M (2016) Clausius–Mossotti Lorentz–Lorenz relations and retardation effects for two-dimensional crystals. Phys Rev A 93:053808CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations