Advertisement

Journal of Materials Science

, Volume 54, Issue 2, pp 1099–1111 | Cite as

The effect of dopants on crystal growth kinetics of lithium disilicate: surface versus bulk crystallization

  • Katrin Thieme
  • Christian Rüssel
Ceramics
  • 65 Downloads

Abstract

Glasses with the compositions 2 RyOz·98 Li2Si2O5 (R = Al, Ti, La, Ce, or Nb) and x ZrO2·(100 − x) Li2Si2O5 (x = 1, 2, 3, or 5 mol%) were studied with respect to their crystallization behavior using differential scanning calorimetry, X-ray diffraction, as well as optical and scanning electron microscopy. During thermal treatment, in all samples lithium disilicate was crystallized. From the differential scanning calorimetry profiles recorded using different heating rates in the range from 5 to 20 K/min, activation energies and Avrami parameters were calculated. The activation energies decreased for coarser powders and bulk samples. The Avrami parameters were smallest for fine powders and largest for the bulk samples, which stand for sole surface and predominant bulk crystallization, respectively. The crystal growth velocities determined from optical and scanning electron micrographs were largest for the undoped sample. For most samples, the crystal growth velocities were notably larger (up to two times) for the bulk crystallization than for surface crystallization. This should be due to the formation of concentration gradients formed by the shoved-away components, which are not incorporated into the lithium disilicate crystals. In the case of bulk crystallization, radial diffusion plays an important part which enhances diffusion and hence leads to higher growth velocities.

References

  1. 1.
    James PF (1985) Kinetics of crystal nucleation in silicate glasses. J Non-Cryst Solids 73:517–540CrossRefGoogle Scholar
  2. 2.
    Kalinina AM, Filipovich VN, Fokin VM (1980) Stationary and non-stationary crystal nucleation rate in a glass of 2Na2O·CaO·3SiO2 stoichiometric composition. J Non-Cryst Solids 38–39(Part 2):723–728CrossRefGoogle Scholar
  3. 3.
    Deubener J, Brückner R, Sternitzke M (1993) Induction time analysis of nucleation and crystal growth in di- and metasilicate glasses. J Non-Cryst Solids 163:1–12CrossRefGoogle Scholar
  4. 4.
    James PF (1982) Nucleation in glass-forming systems - a review. In: Simmons JH, Uhlmann DR, Beall GH (eds) Nucleation and Crystallization in Glasses (Advances in Ceramics). American Ceramic Society, Columbus, pp 1–48Google Scholar
  5. 5.
    Wakasugi T, Burgner LL, Weinberg MC (1999) A DTA study of crystal nucleation in Na2O–SiO2 glasses. J Non-Cryst Solids 244:63–73CrossRefGoogle Scholar
  6. 6.
    Burgner LL, Weinberg MC (2000) Crystal nucleation rates in a Na2O–SiO2 glass. J Non-Cryst Solids 261:163–168CrossRefGoogle Scholar
  7. 7.
    Wisniewski W, Otto K, Rüssel C (2012) Oriented nucleation of diopside crystals in glass. Cryst Growth Des 12:5035–5041CrossRefGoogle Scholar
  8. 8.
    Otto K, Wisniewski W, Rüssel C (2013) Growth mechanisms of surface crystallized diopside. CrystEngComm 15:6381–6388CrossRefGoogle Scholar
  9. 9.
    Wisniewski W, Zscheckel T, Völksch G, Rüssel C (2010) Electron backscatter diffraction of BaAl2B2O7 crystals grown from the surface of a BaO·Al2O3·B2O3 glass. CrystEngComm 12:3105–3111CrossRefGoogle Scholar
  10. 10.
    Wisniewski W, Schröter B, Zscheckel T, Rüssel C (2012) A global glassy layer on BaAl2B2O7 crystals formed during surface crystallization of BaO·Al2O3·B2O3 Glass. Cryst Growth Des 12:1586–1592CrossRefGoogle Scholar
  11. 11.
    Wisniewski W, Nagel M, Völksch G, Rüssel C (2010) Electron backscatter diffraction of fresnoite crystals grown from the surface of a 2BaO·TiO2·2.75SiO2 glass. Cryst Growth Des 10:1414–1418CrossRefGoogle Scholar
  12. 12.
    Wisniewski W, Patschger M, Rüssel C (2012) Sr-fresnoite surface crystallisation in a 2SrO·TiO2·2.75SiO2 glass studied by EBSD. CrystEngComm 14:5425–5433CrossRefGoogle Scholar
  13. 13.
    James P (1974) Kinetics of crystal nucleation in lithium silicate glasses. Phys Chem Glasses 15:95–105Google Scholar
  14. 14.
    Barker MF, Wang T-H, James PF (1988) Nucleation and growth kinetics of lithium disilicate and lithium metasilicate in lithia-silica glasses. Phys Chem Glasses 29:240–248Google Scholar
  15. 15.
    Thieme K, Rüssel C (2014) Nucleation inhibitors—the effect of small concentrations of Al2O3, La2O3 or TiO2 on nucleation and crystallization of lithium disilicate. J Eur Ceram Soc 34:3969–3979CrossRefGoogle Scholar
  16. 16.
    Gutzow IS, Schmelzer JWP (1995) The vitreous state: thermodynamics, structure, rheology, and crystallization, 1st edn. Springer, BerlinCrossRefGoogle Scholar
  17. 17.
    Zanotto ED (1991) Surface crystallization kinetics in soda-lime-silica glasses. J Non-Cryst Solids 129:183–190CrossRefGoogle Scholar
  18. 18.
    Möller J, Schmelzer J, Gutzow I (1997) Elastic stresses in surface crystallization of glasses: phase transformations at spike tips. J Non-Cryst Solids 219:142–148CrossRefGoogle Scholar
  19. 19.
    Schmelzer J, Pascova R, Möller J, Gutzow I (1993) Surface-induced devitrification of glasses: the influence of elastic strains. J Non-Cryst Solids 162:26–39CrossRefGoogle Scholar
  20. 20.
    Avramov I, Völksch G (2002) Near-surface crystallization of cordierite glass. J Non-Cryst Solids 304:25–30CrossRefGoogle Scholar
  21. 21.
    Schmelzer JWP, Potapov OV, Fokin VM et al (2004) The effect of elastic stress and relaxation on crystal nucleation in lithium disilicate glass. J Non-Cryst Solids 333:150–160CrossRefGoogle Scholar
  22. 22.
    Thieme K, Rüssel C (2015) The effect of niobium- and tantalum oxide on nucleation and growth kinetics in lithium disilicate glasses. Mater Chem Phys 162:354–363CrossRefGoogle Scholar
  23. 23.
    Patzig C, Höche T, Dittmer M, Rüssel C (2012) Temporal evolution of crystallization in MgO–Al2O3–SiO2–ZrO2 glass ceramics. Cryst Growth Des 12:2059–2067CrossRefGoogle Scholar
  24. 24.
    Hunger A, Carl G, Gebhardt A, Rüssel C (2008) Ultra-high thermal expansion glass–ceramics in the system MgO/Al2O3/TiO2/ZrO2/SiO2 by volume crystallization of cristobalite. J Non-Cryst Solids 354:5402–5407CrossRefGoogle Scholar
  25. 25.
    Kleebusch E, Patzig C, Höche T, Rüssel C (2016) Effect of the concentrations of nucleating agents ZrO2 and TiO2 on the crystallization of Li2O–Al2O3–SiO2 glass: an X-ray diffraction and TEM investigation. J Mater Sci 51:10127–10138CrossRefGoogle Scholar
  26. 26.
    Kleebusch E, Patzig C, Höche T, Rüssel C (2017) Phase formation during crystallization of a Li2O-Al2O3-SiO2 glass with ZrO2 as nucleating agent—an X-ray diffraction and (S)TEM-study. Ceram Int 43:9769–9777CrossRefGoogle Scholar
  27. 27.
    Bach H, Krause D (2005) Low thermal expansion glass ceramics. Springer, BerlinCrossRefGoogle Scholar
  28. 28.
    Höland W, Rheinberger V, Apel E et al (2006) Clinical applications of glass-ceramics in dentistry. J Mater Sci Mater Med 17:1037–1042CrossRefGoogle Scholar
  29. 29.
    Höland W, Rheinberger V, Apel E, van’t Hoen C (2007) Principles and phenomena of bioengineering with glass-ceramics for dental restoration. J Eur Ceram Soc 27:1521–1526CrossRefGoogle Scholar
  30. 30.
    Beall GH (1992) Design and properties of glass-ceramics. Annu Rev Mater Sci 22:91–119CrossRefGoogle Scholar
  31. 31.
    Zanotto Edgar Dutra (2010) A bright future for glass-ceramics. Am Ceram Soc Bull 89:19–27Google Scholar
  32. 32.
    von Clausbruch SC, Schweiger M, Höland W, Rheinberger V (2000) The effect of P2O5 on the crystallization and microstructure of glass-ceramics in the SiO2–Li2O–K2O–ZnO–P2O5 system. J Non-Cryst Solids 263–264:388–394CrossRefGoogle Scholar
  33. 33.
    Matusita K, Sakka S (1980) Kinetic study of crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. J Non-Cryst Solids 38–39:741–746CrossRefGoogle Scholar
  34. 34.
    Engel K, Frischat GH (1996) Textured Li2O · 2SiO2 glass ceramics. J Non-Cryst Solids 196:339–345CrossRefGoogle Scholar
  35. 35.
    Ding Y, Miura Y, Yamaji H (1998) Oriented surface crystallisation of lithium disilicate on glass and the effect of ultrasonic surface treatment. Phys Chem Glasses 39:338–343Google Scholar
  36. 36.
    Anspach O, Keding R, Rüssel C (2005) Oriented lithium disilicate glass–ceramics prepared by electrochemically induced nucleation. J Non-Cryst Solids 351:656–662CrossRefGoogle Scholar
  37. 37.
    Booth CL, Rindone GE (1964) Surface nucleation and crystal orientation in lithium silicate glass fibers. J Am Ceram Soc 47:25–29CrossRefGoogle Scholar
  38. 38.
    de Jong BHWS, Supèr HTJ, Spek AL et al (1998) Mixed alkali systems: structure and 29Si MASNMR of Li2Si2O5 and K2Si2O5. Acta Crystallogr Sect B Struct Sci 54:568–577CrossRefGoogle Scholar
  39. 39.
    Rowlands EG, James PF (1979) Analysis of steady state crystal nucleation rates in glasses. Part 2: further comparison between theory and experiment for lithium disilicate glass. Phys Chem Glasses 20:9–14Google Scholar
  40. 40.
    Donnay G, Donnay JDH (1953) Crystal geometry of some alkali silicates. Am Mineral 38:163–171Google Scholar
  41. 41.
    Rindone GE (1962) Crystal orientation as influenced by platinum nucleation. In: Proceedings of the symposium on nucleation and crystallization in glasses and melts, pp. 63–69Google Scholar
  42. 42.
    Matusita K, Sakka S, Matsui Y (1975) Determination of the activation energy for crystal growth by differential thermal analysis. J Mater Sci 10:961–966CrossRefGoogle Scholar
  43. 43.
    Komppa V (1979) The crystallization kinetics of Li2O-SiO2 glasses studied by amorphous x-ray scattering. Phys Chem Glasses 20:85–90Google Scholar
  44. 44.
    Ogura T, Hayami R, Kadota M (1968) Kinetics and mechanism of crystallization of lithium disilicate glasses. J Ceram Assoc Jpn 76:277–284CrossRefGoogle Scholar
  45. 45.
    Gonzalez-Oliver CJR, Johnson PS, James PF (1979) Influence of water content on the rates of crystal nucleation and growth in lithia-silica and soda-lime-silica glasses. J Mater Sci 14:1159–1169CrossRefGoogle Scholar
  46. 46.
    Burgner LL, Weinberg MC (2001) An assessment of crystal growth behavior in lithium disilicate glass. J Non-Cryst Solids 279:28–43CrossRefGoogle Scholar
  47. 47.
    Marotta A, Buri A, Branda F (1980) Surface and bulk crystallization in non-isothermal devitrification of glasses. Thermochim Acta 40:397–403CrossRefGoogle Scholar
  48. 48.
    Ray CS, Huang W, Day DE (1991) Crystallization kinetics of a lithia-silica glass: effect of sample characteristics and thermal analysis measurement techniques. J Am Ceram Soc 74:60–66CrossRefGoogle Scholar
  49. 49.
    Marques LE, Costa AMC, Crovace MC et al (2015) Influence of particle size on nonisothermal crystallization in a lithium disilicate glass. J Am Ceram Soc 98:774–780CrossRefGoogle Scholar
  50. 50.
    Thieme K, Rüssel C (2016) CeO2 and Y2O3 as nucleation inhibitors in lithium disilicate glasses. J Mater Sci 51:989–999CrossRefGoogle Scholar
  51. 51.
    Thieme K, Avramov I, Rüssel C (2016) The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses. Sci Rep 6:25451CrossRefGoogle Scholar
  52. 52.
    Karamanov A, Avramov I, Arrizza L et al (2012) Variation of Avrami parameter during non-isothermal surface crystallization of glass powders with different sizes. J Non-Cryst Solids 358:1486–1490CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Otto-Schott-Institut für MaterialforschungJena UniversityJenaGermany

Personalised recommendations