Journal of Materials Science

, Volume 54, Issue 2, pp 1184–1196 | Cite as

Poly(4-vinylpyridine)-modified silica for efficient oil/water separation

  • Mohamad Maaz
  • Tamara ElzeinEmail author
  • Diana Dragoe
  • Alice Bejjani
  • Nathalie Jarroux
  • Christophe Poulard
  • Nadine Aubry-Barroca
  • Bilal Nsouli
  • Philippe RogerEmail author
Chemical routes to materials


Silica particles were modified with a poly(4-vinylpyridine) (P4VP) for efficient separation of oil-in-water emulsions. Using a 3-(aminopropyl) triethoxysilane (APTES)-based molecule coupled to an appropriate radical initiator, P4VP chains were built from silica surfaces under mild reaction conditions using surface-initiated supplemental activator and reducing agent atom transfer radical polymerization. P4VP-modified silica particles were successfully used as a pH-switchable barrier for oil/water separation and proved to be efficient in removing oil from an oil-in-water nanoemulsion.



Many thanks to Mrs. Sandra Mazerat from the “Institut de Chimie Moléculaire et des Matériaux d’Orsay” (ICMMO) for AFM measurements and Mr. Marceau Hénot from the “Laboratoire de Physique des Solides” (Orsay, France) for ellipsometry analysis. The authors would like to acknowledge the “Lebanese National Council for Scientific Research (CNRS-L)” for granting a doctoral fellowship to Mr. Maaz and the Hubert-Curien partnerships for granting a CEDRE Project for 2017–2018. Dr. Elzein acknowledges “L’OREAL-UNESCO foundation” for granting her the “L’OREAL-UNESCO for Women in Science, Levant and Egypt” regional fellowship 2016.


  1. 1.
    Haller I (1978) Covalently attached organic monolayers on semiconductor surfaces. J Am Chem Soc 100(26):8050–8055CrossRefGoogle Scholar
  2. 2.
    Taylor A et al (2000) Adhesion of microbes using 3-aminopropyl triethoxy silane and specimen stabilisation techniques for analytical transmission electron microscopy. J Microsc 199(1):56–67CrossRefGoogle Scholar
  3. 3.
    Falsey JR et al (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug Chem 12(3):346–353CrossRefGoogle Scholar
  4. 4.
    Kusnezow W et al (2003) Antibody microarrays: an evaluation of production parameters. Proteomics 3(3):254–264CrossRefGoogle Scholar
  5. 5.
    Gunda NSK et al (2014) Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker. Appl Surf Sci 305:522–530CrossRefGoogle Scholar
  6. 6.
    Szwarc M (1998) Living polymers. Their discovery, characterization, and properties. J Polym Sci Part A Polym Chem 36(1):IX–XVCrossRefGoogle Scholar
  7. 7.
    Hadjichristidis N et al (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101(12):3747–3792CrossRefGoogle Scholar
  8. 8.
    Li Z et al (2014) Design of polyhedral oligomeric silsesquioxane (POSS) based thermo-responsive amphiphilic hybrid copolymers for thermally denatured protein protection applications. Polym Chem 5(23):6740–6753CrossRefGoogle Scholar
  9. 9.
    Matyjaszewski K, Tsarevsky NV (2014) Macromolecular engineering by atom transfer radical polymerization. J Am Chem Soc 136(18):6513–6533CrossRefGoogle Scholar
  10. 10.
    Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1(4):276CrossRefGoogle Scholar
  11. 11.
    Siegwart DJ, Oh JK, Matyjaszewski K (2012) ATRP in the design of functional materials for biomedical applications. Prog Polym Sci 37(1):18–37CrossRefGoogle Scholar
  12. 12.
    Nicolas J et al (2013) Nitroxide-mediated polymerization. Prog Polym Sci 38(1):63–235CrossRefGoogle Scholar
  13. 13.
    Perrier S, Takolpuckdee P (2005) Macromolecular design via reversible addition–fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J Polym Sci Part A Polym Chem 43(22):5347–5393CrossRefGoogle Scholar
  14. 14.
    Wang J-S, Matyjaszewski K (1995) Controlled/” living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28(23):7901–7910CrossRefGoogle Scholar
  15. 15.
    Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101(9):2921–2990CrossRefGoogle Scholar
  16. 16.
    Matyjaszewski K et al (2006) Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proc Natl Acad Sci 103(42):15309–15314CrossRefGoogle Scholar
  17. 17.
    Magenau AJ et al (2011) Electrochemically mediated atom transfer radical polymerization. Science 332(6025):81–84CrossRefGoogle Scholar
  18. 18.
    Tasdelen MA, Uygun M, Yagci Y (2010) Photoinduced controlled radical polymerization in methanol. Macromol Chem Phys 211(21):2271–2275CrossRefGoogle Scholar
  19. 19.
    Konkolewicz D et al (2012) Visible light and sunlight photoinduced ATRP with ppm of Cu catalyst. ACS Macro Lett 1(10):1219–1223CrossRefGoogle Scholar
  20. 20.
    Jakubowski W, Min K, Matyjaszewski K (2006) Activators regenerated by electron transfer for atom transfer radical polymerization of styrene. Macromolecules 39(1):39–45CrossRefGoogle Scholar
  21. 21.
    Jakubowski W, Matyjaszewski K (2006) Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth) acrylates and related block copolymers. Angew Chem 118(27):4594–4598CrossRefGoogle Scholar
  22. 22.
    Min K, Gao H, Matyjaszewski K (2007) Use of ascorbic acid as reducing agent for synthesis of well-defined polymers by ARGET ATRP. Macromolecules 40(6):1789–1791CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Wang Y, Matyjaszewski K (2011) ATRP of methyl acrylate with metallic zinc, magnesium, and iron as reducing agents and supplemental activators. Macromolecules 44(4):683–685CrossRefGoogle Scholar
  24. 24.
    Matyjaszewski K et al (1997) Zerovalent metals in controlled/“living” radical polymerization. Macromolecules 30(23):7348–7350CrossRefGoogle Scholar
  25. 25.
    Mendonça PV et al (2014) Synthesis of cationic poly ((3-acrylamidopropyl)trimethylammonium chloride) by SARA ATRP in ecofriendly solvent mixtures. Polym Chem 5(19):5829–5836CrossRefGoogle Scholar
  26. 26.
    Zhang T et al (2015) Surface-initiated Cu(0) mediated controlled radical polymerization (SI-CuCRP) using a copper plate. Polym Chem 6(14):2726–2733CrossRefGoogle Scholar
  27. 27.
    Li J-J, Zhou Y-N, Luo Z-H (2015) Smart fiber membrane for pH-induced oil/water separation. ACS Appl Mater Interfaces 7(35):19643–19650CrossRefGoogle Scholar
  28. 28.
    Yang J et al (2018) pH-Responsive poly (dimethylsiloxane) copolymer decorated magnetic nanoparticles for remotely controlled oil-in-water nanoemulsion separation. Macromol Rapid Commun. CrossRefGoogle Scholar
  29. 29.
    Maaz M et al (2017) Surface initiated supplemental activator and reducing agent atom transfer radical polymerization (SI-SARA-ATRP) of 4-vinylpyridine on poly (ethylene terephthalate). J Colloid Interface Sci 500:69–78CrossRefGoogle Scholar
  30. 30.
    Deline V et al (1978) Mechanism of the SIMS matrix effect. Appl Phys Lett 33(9):832–835CrossRefGoogle Scholar
  31. 31.
    Zhang F et al (2010) Chemical vapor deposition of three aminosilanes on silicon dioxide: surface characterization, stability, effects of silane concentration, and cyanine dye adsorption. Langmuir 26(18):14648–14654CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lebanese Atomic Energy CommissionNational Council for Scientific Research, CNRS-LBeirutLebanon
  2. 2.Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182, Bâtiment 420, Université Paris-SudUniversité Paris SaclayOrsayFrance
  3. 3.Laboratoire d’Analyses et Modélisation pour la Biologie et l’Environnement (LAMBE)Université d’Evry Val d’EssonneEvryFrance
  4. 4.Laboratoire de Physique des Solides, CNRS, Université Paris-SudUniversité Paris-SaclayOrsay CedexFrance

Personalised recommendations