Advertisement

Journal of Materials Science

, Volume 54, Issue 2, pp 1475–1487 | Cite as

Enhanced lithium storage capability enabled by metal nickel dotted NiO–graphene composites

  • Jin Chen
  • Zhao Wang
  • Jiechen Mu
  • Bing Ai
  • Tiezhu Zhang
  • Wenqing Ge
  • Lipeng Zhang
Energy materials
  • 320 Downloads

Abstract

The electrochemical performance of Li-ion batteries, which is limited by large volume changes and low intrinsic conductivity, can be improved by using a NiO–graphene composite as an electrode. Herein, we constructed metallic Ni-dotted NiO flakes on folded graphene and evaluated the electrochemical performance of the resulting composites. Introduction of graphene produced an excellent 2D structure that led to the homogeneous growth of Ni–NiO particles and improved the structural stability and conductivity of the final material. After 50 cycles, the reversible discharge capacity of Ni–NiO/G-2 reached 660.7 mAh g−1 at a current density of 100 mAh g−1 and approximately 75.0% of the capacity was maintained relative to the initial discharge capacity. The Ni–NiO/G-4 electrode displayed excellent high-rating performance, and the metallic Ni particles effectively improved the reversibility of solid electrolyte interface (SEI) films. Test results showed that the decomposition/regeneration of SEI films influenced the charge/discharge capacities of the electrodes during cycling.

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (51574160, 51054003), National Key Research and Development Program of China (2017YFB0102004), Shandong Province National Natural Science Foundation (ZR2014EEM049), Key Research and Development Program of Shandong Province (2017CSGC0502, 2017GGX40102), and State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources (yy20160010).

Supplementary material

10853_2018_2882_MOESM1_ESM.docx (107 kb)
Supplementary material 1 (DOCX 107 kb)

References

  1. 1.
    Lv C, Yang X, Umar A, Xia Y, Jia Y, Shang L, Zhang T, Yang D (2015) Architecture-controlled synthesis of MxOy (M = Ni, Fe, Cu) microfibres from seaweed biomass for high performance lithium ion battery anodes. J Mater Chem A 3:22708–22715CrossRefGoogle Scholar
  2. 2.
    Lv Y, Chen B, Zhao N, Shi C, He C, Li J, Liu E (2016) Interfacial effect on the electrochemical properties of the layered graphene/metal sulfide composites as anode materials for Li-ion batteries. Surf Sci 651:10–15CrossRefGoogle Scholar
  3. 3.
    Zhu T, Li X, Zhang Y, Yuan M, Sun Z, Ma S, Li H, Sun G (2018) Three-dimensional reticular material NiO/Ni–graphene foam as cathode catalyst for high capacity lithium–oxygen battery. J Electroanal Chem 823:73–79CrossRefGoogle Scholar
  4. 4.
    Rachid Y (1999) Surface chemistry and lithium storage capability of the graphite–lithium electrode. Electrochim Acta 45:87–97CrossRefGoogle Scholar
  5. 5.
    Liu L, Yang X, Lv C, Zhu A, Zhu X, Guo S, Chen C, Yang D (2016) Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance. ACS Appl Mater Interfaces 8:7047–7053CrossRefGoogle Scholar
  6. 6.
    An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76CrossRefGoogle Scholar
  7. 7.
    Sun J, Lv C, Lv F, Chen S, Li D, Guo Z, Han W, Yang D, Guo S (2017) Tuning the shell number of multishelled metal oxide hollow fibers for optimized lithium-ion storage. ACS Nano 11:6186–6193CrossRefGoogle Scholar
  8. 8.
    Li D, Yang D, Zhu X, Jing D, Xia Y, Ji Q, Cai R, Li H, Che Y (2014) Simple pyrolysis of cobalt alginate fibres into Co3O4/C nano/microstructures for a high performance lithium ion battery anode. J Mater Chem A 2:18761–18766CrossRefGoogle Scholar
  9. 9.
    Yuan W, Zhang J, Xie D, Dong Z, Su Q, Du G (2013) Porous CoO/C polyhedra as anode material for Li-ion batteries. Electrochim Acta 108:506–511CrossRefGoogle Scholar
  10. 10.
    Qiao H, Xiao L, Zheng Z, Liu H, Jia F, Zhang L (2008) One-pot synthesis of CoO/C hybrid microspheres as anode materials for lithium-ion batteries. J Power Sources 185:486–491CrossRefGoogle Scholar
  11. 11.
    Li X, Lin KW, Liang HT, Hsu HF, Galkin NG, Wroczynskyj Y, van Lierop J, Pong PWT (2015) The effects of interfacial interactions between Fe–O and Fe–Si induced by ion-beam bombardment on the magnetic properties of Si-oxide/Fe bilayers. Nucl Instrum Methods Phys Res Sect B 365:196–201CrossRefGoogle Scholar
  12. 12.
    Lin P, She Q, Hong B, Liu X, Shi Y, Shi Z, Zheng M, Dong Q (2010) The nickel oxide/CNT composites with high capacitance for supercapacitor. J Electrochem Soc 157:A818–A823CrossRefGoogle Scholar
  13. 13.
    Thi TV, Rai AK, Gim J, Kim J (2015) High performance of Co-doped NiO nanoparticle anode material for rechargeable lithium ion batteries. J Power Sources 292:23–30CrossRefGoogle Scholar
  14. 14.
    Palmieri A, Wang T, Zhang J, Spinner N, Liu M, Mustaina WE (2017) Modeling nickel oxide particle stress behavior induced by lithiation using a FEM linear elastic approach. J Electrochem Soc 164:A867–A873CrossRefGoogle Scholar
  15. 15.
    Hu Z, Liu H (2015) Three-dimensional CuO microflowers as anode materials for Li-ion batteries. Ceram Int 41:8257–8260CrossRefGoogle Scholar
  16. 16.
    Wan Y, Yang Z, Xiong G, Guo R, Liu Z, Luo H (2015) Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries. J Power Sources 294:414–419CrossRefGoogle Scholar
  17. 17.
    Wang L, Yu Y, Chen PC, Zhang DW, Chen CH (2008) Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J Power Sources 183:717–723CrossRefGoogle Scholar
  18. 18.
    Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Net-structured NiO–C nanocomposite as Li-intercalation electrode material. Electrochem Commun 9:1180–1184CrossRefGoogle Scholar
  19. 19.
    Lee DH, Kim JC, Shim HW, Kim DW (2014) Highly reversible Li storage in hybrid NiO/Ni/graphene nanocomposites prepared by an electrical wire explosion process. ACS Appl Mater Interfaces 6:137–142CrossRefGoogle Scholar
  20. 20.
    Su X, Chai H, Jia D, Bao S, Zhou W, Zhou M (2013) Effective microwave-assisted synthesis of graphene nanosheets/NiO composite for high-performance supercapacitors. New J Chem 37:439–443CrossRefGoogle Scholar
  21. 21.
    Li D, Yang D, Yang X, Wang Y, Guo Z, Xia Y, Sun S, Guo S (2016) Double-helix structure in carrageenan-metal hydrogels: a general approach to porous metal sulfides/carbon aerogels with excellent sodium-ion storage. Angew Chem Int Ed 55:1–5CrossRefGoogle Scholar
  22. 22.
    Zhou G, Wang DW, Yin LC, Li N, Li F, Cheng HM (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6:3214–3223CrossRefGoogle Scholar
  23. 23.
    Vaidya S, Ramanujachary KV, Lofland SE, Ganguli AK (2009) Synthesis of homogeneous NiO@SiO2 core–shell nanostructures and the effect of shell thickness on the magnetic properties. Cryst Growth Des 9:1666–1670CrossRefGoogle Scholar
  24. 24.
    Mollamahale YB, Liu Z, Zhen Y, Tian ZQ, Hosseini D, Chen L, Shen PK (2016) Simple fabrication of porous NiO nanoflowers: growth mechanism, shape evolution and their application into Li-ion batteries. Int J Hydrogen Energy 42:7202–7211CrossRefGoogle Scholar
  25. 25.
    Hwang SG, Kim G, Yun SR, Ryu KS (2012) NiO nanoparticles with plate structure grown on graphene as fast charge–discharge anode material for lithium ion batteries. Electrochim Acta 78:406–411CrossRefGoogle Scholar
  26. 26.
    Xing LL, Cui CX, He B, Nie YX, Deng P, Xue XY (2013) SnO2/NiO core–shell nanobelts and their high reversible lithium storage capacity arising from synergisticeffect. Mater Lett 96:158–161CrossRefGoogle Scholar
  27. 27.
    Ju D, Xu H, Xu Q, Gong H, Qiu Z, Guo J, Zhang J, Cao B (2015) High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors. Sens Actuators B Chem 215:39–44CrossRefGoogle Scholar
  28. 28.
    Ali AM, Najmy R (2013) Structural optical and photocatalytic properties of NiO–SiO2 nanocomposites prepared by sol–gel technique. Catal Today 208:2–6CrossRefGoogle Scholar
  29. 29.
    Sun X, Si W, Liu X, Deng J, Xi L, Liu L, Yan C, Schmidt OG (2014) Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 9:168–175CrossRefGoogle Scholar
  30. 30.
    Luo Y, Weng M, Zheng J, Zhang Q, Xu B, Song S, Shen Y, Lin Y, Pan F, Nan C (2018) The origin of cycling enhanced capacity of Ni/NiO species confined on nitrogen doped carbon nanotubes for lithium-ion battery anodes. J Alloy Compd 750:17–22CrossRefGoogle Scholar
  31. 31.
    Ding C, Zhou W, Wang X, Shi B, Wang D, Zhou P, Wen G (2018) Hybrid aerogel-derived carbon/porous reduced graphene oxide dual-functionalized NiO for high-performance lithium storage. Chem Eng J 332:479–485CrossRefGoogle Scholar
  32. 32.
    Sun X, Yan C, Chen Y, Si W, Deng J, Oswald S, Liu L, Schmidt OG (2014) Three-dimensionally “curved” NiO nanomembranes as ultrahigh rate capability anodes for Li-ion batteries with long cycle lifetimes. Adv Energy Mater 4:1300912–1300917CrossRefGoogle Scholar
  33. 33.
    Yao WL, Wang JL, Yang J, Du GD (2008) Novel carbon nanofiber-cobalt oxide composites for lithium storage with large capacity and high reversibility. J Power Sources 176:369–372CrossRefGoogle Scholar
  34. 34.
    Yao W, Yang J, Wang J, Tao L (2008) Synthesis and electrochemical performance of carbon nanofiber–cobalt oxide composites. Electrochim Acta 53:7326–7330CrossRefGoogle Scholar
  35. 35.
    Bell J, Ye R, Ahmed K, Liu C, Ozkan M, Ozkan CS (2015) Free-standing Ni–NiO nanofiber cloth anode for high capacity and high rate Li-ion batteries. Nano Energy 18:47–56CrossRefGoogle Scholar
  36. 36.
    Wang W, Ruiz I, Ahmed K, Bay HH, George AS, Wang J, Butler J, Ozkan M, Ozkan CS (2014) Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes. Small 10:3389–3396CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShandong University of TechnologyZiboChina

Personalised recommendations