Advertisement

Journal of Materials Science

, Volume 54, Issue 1, pp 671–682 | Cite as

MoO3/BiVO4 heterojunction film with oxygen vacancies for efficient and stable photoelectrochemical water oxidation

  • Yaqi Chen
  • Minji Yang
  • Jinyan Du
  • Gaili Ke
  • Xiaohui Zhong
  • Yong Zhou
  • Faqin Dong
  • Liang Bian
  • Huichao He
Energy materials
  • 296 Downloads

Abstract

Poor charge transfer and separation rate are the major bottlenecks for the activity and stability of BiVO4 photoanode. Here, we introduced oxygen vacancies into MoO3/BiVO4 heterojunction film by post-annealing the film in argon-saturated environment for improving its photoelectrochemical (PEC) water oxidation activity and stability. In comparison with the normal MoO3/BiVO4 film, the MoO3/BiVO4 film with oxygen vacancies is of better PEC water oxidation performance. Specifically, a higher photocurrent density of 4.1 mA/cm2 in 0.1 M Na2SO4 at 1.1 V versus SCE was achieved on the MoO3/BiVO4 film with oxygen vacancies, which is about 200% improved over the normal MoO3/BiVO4 film (1.83 mA cm−2, at 1.1 V versus SCE). In addition, the MoO3/BiVO4 film with oxygen vacancies shows more stable activity and faster kinetics for water oxidation, without significant activity loss for 5 h reaction at 1.23 V versus RHE. The enhanced performance on such a MoO3/BiVO4 film photoanode can be attributed to that the oxygen vacancies accelerate the charge transfer and separation rate between film/electrolyte interface, and thus improve the water oxidation activity and restrain the anodic photocorrosion simultaneously.

Notes

Acknowledgements

The authors acknowledge National Basic Research Program of China (973 Program: 2014CB846003), National Natural Science Foundation of China (41702037), Sichuan Science and Technology Program (2017JY0146 and 2018JY0462), Research Fund of Southwest University of Science and Technology (15zx7104 and 15zx7123).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10853_2018_2863_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1188 kb)

References

  1. 1.
    Tan HL, Amal R, Ng YH (2017) Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. J Mater Chem A 5:16498–16521CrossRefGoogle Scholar
  2. 2.
    Jia Q, Iwashina K, Kudo A (2012) Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Proc Natl Acad Sci 109:11564–11569CrossRefGoogle Scholar
  3. 3.
    Walsh A, Yan Y, Huda MN, Al-Jassim MM, Wei SH (2009) Band edge electronic structure of BiVO4: elucidating the role of the bis and Vd orbitals. Chem Mater 21:547–551CrossRefGoogle Scholar
  4. 4.
    Kim TW, Choi KS (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343:990–994CrossRefGoogle Scholar
  5. 5.
    Chen Z, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M (2010) Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J Mater Res 25:3–16CrossRefGoogle Scholar
  6. 6.
    Zhao Z, Li Z, Zou Z (2011) Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. Phys Chem Chem Phys 13:4746–4753CrossRefGoogle Scholar
  7. 7.
    Lee DK, Choi KS (2018) Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat Energy 3:53–60CrossRefGoogle Scholar
  8. 8.
    Park HS, Kweon KE, Ye H, Paek E, Hwang GS, Bard AJ (2011) Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J Phys Chem C 115:17870–17879CrossRefGoogle Scholar
  9. 9.
    Luo W, Yang Z, Li Z, Zhang J, Liu J, Zhao Z, Wang Z, Yan S, Yu T, Zou Z (2012) Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ Sci 4:4046–4051CrossRefGoogle Scholar
  10. 10.
    Seabold JA, Choi KS (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134:2186–2192CrossRefGoogle Scholar
  11. 11.
    Abdi FF, Krol R (2012) Nature and light dependence of bulk recombination in Co-Pi catalyzed BiVO4 photoanodes. J Phys Chem C 116:9398–9404CrossRefGoogle Scholar
  12. 12.
    Rao PM, Cai L, Liu C, Cho IS, Lee CH, Weisse JM, Yang P, Zheng X (2014) Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett 14:1099–1105CrossRefGoogle Scholar
  13. 13.
    Eisenberg D, Ahn HS, Bard AJ (2014) Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide. J Am Chem Soc 136:14011–14014CrossRefGoogle Scholar
  14. 14.
    Wang G, Yang Y, Han D, Li Y (2017) Oxygen defective metal oxides for energy conversion and storage. Nano Today 13:23–39CrossRefGoogle Scholar
  15. 15.
    Abdi FF, Savenije TJ, May MM, Dam B, van de Krol R (2013) The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J Phys Chem Lett 4:2752–2757CrossRefGoogle Scholar
  16. 16.
    Wu JM, Chen Y, Pan L, Wang P, Cui Y, Kong DC, Wang L, Zhang X, Zou JJ (2018) Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications. Appli Catal B Environ 221:187–195CrossRefGoogle Scholar
  17. 17.
    Balendhran S, Deng J, Ou JZ, Walia S, Scott J, Tang J, Wang KL, Field MR, Russo S, Zhuiykov S, Strano MS, Medhekar N, Sriram S, Bhaskaran M, Kalantar-zadeh K (2013) Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv Mater 25:109–114CrossRefGoogle Scholar
  18. 18.
    He H, Zhou Y, Ke G, Zhong X, Yang M, Bian L, Lv K, Dong F (2017) Improved surface charge transfer in MoO3/BiVO4 heterojunction film for photoelectrochemical water oxidation. Electrochim Acta 257:181–191CrossRefGoogle Scholar
  19. 19.
    He H, Berglund SP, Rettie A, Chemelewski W, Xiao P, Zhang Y, Mullins CB (2017) Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation. J Mater Chem A 24:9371–9379Google Scholar
  20. 20.
    Bouzidi A, Benramdane N, Tabet-Derraz H, Mathieu C, Khelifa B, Desfeux R (2003) Effect of substrate temperature on the structural and optical properties of MoO3 thin films prepared by spray pyrolysis technique. Mater Sci Eng, B 97:5–8CrossRefGoogle Scholar
  21. 21.
    Yoon H, Mali MG, Choi JY, Kim MW, Choi SK, Park H, Al-Deyab SS, Swihart MT, Yarin AL, Yoon SS (2015) Nanotextured pillars of electrosprayed bismuth vanadate for efficient photoelectrochemical water splitting. Langmuir 31:3727–3737CrossRefGoogle Scholar
  22. 22.
    Tan H, Suyanto A, De Denko AT, Saputera WH, Amal R, Osterloh FE, Ng Y (2017) Enhancing the photoactivity of faceted BiVO4 via annealing in oxygen-deficient condition. Part Part Syst Charact 34:1600290CrossRefGoogle Scholar
  23. 23.
    Zapart MB, Zapart W, Wyslocki B, Zhukov AP (1988) EPR of V4+ ions in SbVO4. Ferroelectrics 80:55–58CrossRefGoogle Scholar
  24. 24.
    Zheng JY, Lyu HY, Xie C, Wang RL, Tao L, Wu HB, Zhou HJ, Jiang SP, Wang SY (2018) Defect-enhanced charge separation and transfer within protection layer/semiconductor structure of photoanodes. Adv Mater 30:1801773CrossRefGoogle Scholar
  25. 25.
    Bohra D, Smith WA (2015) Improved charge separation via Fe-doping of copper tungstate photoanodes. Phys Chem Chem Phys 17:9857–9866CrossRefGoogle Scholar
  26. 26.
    Parmar KPS, Kang HJ, Bist A, Dua P, Jang JS, Lee JS (2012) Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes. Chemsuschem 5:1926–1934CrossRefGoogle Scholar
  27. 27.
    Ma M, Zhang K, Li P, Jung MS, Jeong MJ, Park JH (2016) Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew Chem Int Ed 128:11998–12002CrossRefGoogle Scholar
  28. 28.
    Fuku K, Miyase Y, Miseki Y, Funaki T, Gunji T, Sayama K (2017) Photoelectrochemical hydrogen peroxide production from water on a WO3/BiVO4 photoanode and from O2 on an Au cathode without external bias. Chem Asian J 12:1111–1119CrossRefGoogle Scholar
  29. 29.
    Matsumoto Y, Omae M, Sato E, Watanabe I (1986) Photoelectrochemical properties of the Zn-Ti-Fe spinel oxides. J Electrochem Soc 133:711–716CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
  2. 2.Ecomaterials and Renewable Energy Research Center, School of PhysicsNanjing UniversityNanjingChina

Personalised recommendations