Advertisement

Journal of Materials Science

, Volume 54, Issue 1, pp 139–148 | Cite as

Thermal expansion of natural mantle spinel using in situ synchrotron X-ray powder diffraction

  • J. Yamamoto
  • T. Yoshino
  • D. Yamazaki
  • Y. Higo
  • Y. Tange
  • J. Torimoto
Ceramics
  • 91 Downloads

Abstract

We used in situ measurements of X-ray diffraction patterns in a cubic multi-anvil press at pressures up to 3 GPa and at 500–1300 K to examine thermal expansion and its pressure dependence in (Mg0.73Fe0.27)(Cr0.56Al1.44)O4 spinel separated from a mantle-derived xenolith. Thermal expansion of mantle minerals is considerably important to examine thermodynamic properties of mantle. Nevertheless, no report of the relevant literature describes a study investigating the thermal expansion of natural mantle spinel under the P–T conditions presented above. Cell volume of the natural spinel increased concomitantly with increasing temperature, enabling us to estimate thermal expansion coefficients. The relation between the cell volume and pressure at 700 K is distinct in slope from those of adjacent temperature, perhaps because of the transition of spinel from order to disorder. Pressure dependence of thermal expansion coefficients was not identified. Reports of some earlier studies have described various values of thermal expansion coefficients of MgAl2O4: αmean = 1.70–2.94 × 10−5 K−1. The obtained mean thermal expansion coefficient (2.66 × 10−5) is slightly higher than the reported values. This slight difference might be inferred as reflecting the effects of the presence of Fe and Cr, respectively, at sites A and B.

Notes

Acknowledgements

We appreciate Wei S., Liu C., and colleagues at Okayama University for their help in obtaining diffraction data. Synchrotron radiation experiments were performed at the BL04B1 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2017B1175). This study was supported by Grants-in-Aid for Scientific Research (Nos. 23654160, 25287139, 26610136, 16H04079, and 16J0472207) from the Japan Society for the Promotion of Science.

References

  1. 1.
    Miller C, Richter W (1982) Solid and fluid phases in lherzolite and pyroxenite inclusions from the Hoggar, central Sahara. Geochem J 16:263–277CrossRefGoogle Scholar
  2. 2.
    Roedder E (1983) Geobarometry of ultramafic xenoliths from Loihi Seamount, Hawaii, on the basis of CO2 inclusions in olivine. Earth Planet Sci Lett 66:369–379CrossRefGoogle Scholar
  3. 3.
    Yamamoto J, Korenaga J, Hirano N, Kagi H (2014) Melt-rich lithosphere-asthenosphere boundary inferred from petit-spot volcanoes. Geology 42:967–970CrossRefGoogle Scholar
  4. 4.
    De Vivo B, Frezzotti ML, Lima A, Trigila R (1988) Spinel lherzolite nodules from Oahu island (Hawaii): a fluid inclusion study. Bull Minéral 111:307–319Google Scholar
  5. 5.
    Schwab RG, Freisleben B (1988) Fluid CO2 inclusions in olivine and pyroxene and their behaviour under high pressure and temperature conditions. Bull Minéral 111:297–306Google Scholar
  6. 6.
    Frezzotti ML, Burke EAJ, DeVivo B et al (1992) Mantle fluids in pyroxenite nodules from Salt Lake Crater (Oahu, Hawaii). Eur J Mineral 4:1137–1153CrossRefGoogle Scholar
  7. 7.
    Yamamoto J, Kagi H, Kaneoka I et al (2002) Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals: implications for the geobarometry of mantle minerals using micro-Raman spectroscopy. Earth Planet Sci Lett 198:511–519CrossRefGoogle Scholar
  8. 8.
    Yamamoto J, Kagi H, Kawakami Y et al (2007) Paleo-Moho depth determined from the pressure of CO2 fluid inclusions: Raman spectroscopic barometry of mantle- and crust-derived rocks. Earth Planet Sci Lett 253:369–377CrossRefGoogle Scholar
  9. 9.
    Sapienza G, Hilton DR, Scribano V (2005) Helium isotopes in peridotite mineral phases from hyblean plateau xenoliths (south-eastern Sicily, Italy). Chem Geol 219:115–129CrossRefGoogle Scholar
  10. 10.
    Andersen T, Neumann E-R (2001) Fluid inclusions in mantle xenoliths. Lithos 55:301–320CrossRefGoogle Scholar
  11. 11.
    Yamamoto J, Ando J, Kagi H et al (2008) In-situ strength measurements of natural upper-mantle minerals. Phys Chem Minerals 35:249–257CrossRefGoogle Scholar
  12. 12.
    Zhang Y (1998) Mechanical and phase equilibria in inclusion–host systems. Earth Planet. Sci. Lett. 157:209–222CrossRefGoogle Scholar
  13. 13.
    Ono K, Harada Y, Yoneda A et al (2018) Determination of elastic constants of single crystal chromian spinel by resonant ultrasound spectroscopy and implications for fluid inclusion geobarometry. Phys Chem Min 45:237–247CrossRefGoogle Scholar
  14. 14.
    Katsura T, Funakoshi K, Kubo A et al (2004) A large-volume high-pressure and high-temperature apparatus for in situ X-ray observation, ‘SPEED-Mk.II’. Phys Earth Planet Inter 143:497–506CrossRefGoogle Scholar
  15. 15.
    Utsumi W, Funakoshi K, Urakawa S et al (1998) SPring-8 Beamlines for High Pressure Science with Multi-Anvil Apparatus. Rev High Pressure Sci Technol 7:1484–1486CrossRefGoogle Scholar
  16. 16.
    Irifune T (2002) Application of synchrotron radiation and Kawai-type apparatus to various studies in high-pressure mineral physics. Min Mag 66:769–790CrossRefGoogle Scholar
  17. 17.
    Tange Y, Nishihara Y, Tsuchiya T (2009) Unified analyses for P–V–T equation of state of MgO: a solution for pressure-scale problems in high P–T experiments. J Geophys Res 114:B03208Google Scholar
  18. 18.
    Seto Y, Nishio-Hamane D, Nagai T, Sata N (2010) Development of a software suite on X-ray diffraction experiments. Rev High Pressure Science and Technology 20:269–276CrossRefGoogle Scholar
  19. 19.
    Suzuki I, Kumazawa M (1980) Anomalous thermal expansion in spinel MgAl2O4. Phys Chem Min 5:279–284Google Scholar
  20. 20.
    Yamanaka T, Takeuchi Y (1983) Order–disorder transition in MgAl2O4 spinel at high temperatures up to 1700 C. Z Kristallogr 165:65–78CrossRefGoogle Scholar
  21. 21.
    Méducin F, Redfern SAT, Le Godec Y et al (2004) Study of cation order disorder in MgAl2O4 spinel by in situ neutron diffraction up to. 1600 K and 3.2 GPa. Am Mineral 89:981–986CrossRefGoogle Scholar
  22. 22.
    Fan D, Zhou W, Liu C et al (2008) Thermal equation of state of natural chromium spinel up to 26.8 GPa and 628 K. J Mate Sci 43:5546–5550.  https://doi.org/10.1007/s10853-008-2825-5 CrossRefGoogle Scholar
  23. 23.
    Fiquet G, Richer P, Montagnac G (1999) High-temperature thermal expansion of lime, periclase, corundum and spinel. Phys Chem Min 27:103–111CrossRefGoogle Scholar
  24. 24.
    Saxena SK, Shen G (1992) Assessment of thermophysical and thermochemical data in some oxides and silicates. J Geophys Res 97:19813–19825CrossRefGoogle Scholar
  25. 25.
    Singh HP, Simmons G, McFarlin PF (1975) Thermal expansion of natural spinel, ferroan gahnite, magnesiochromite, and synthetic spinel. Acta Cryst A31:820–822CrossRefGoogle Scholar
  26. 26.
    Kaprálik I (1969) Thermal expansion of spinels MgCr2O4, MgAl2O4 and MgFe2O4. Chem zvesti 23:665–670Google Scholar
  27. 27.
    Skimmer BJ (1966) Handbook of physical constants. Geol Soc Am Mem 97:78–96Google Scholar
  28. 28.
    Saxena SK, Chatterjee N, Fei Y, Shen G (1993) Thermodynamic data on oxides and silicates. Springer, New YorkCrossRefGoogle Scholar
  29. 29.
    Chang ZP, Barsch GR (1973) Pressure dependence of single-crystal elastic constants and anharmonic properties of spinel. J Geophys Res 78:2418–2433CrossRefGoogle Scholar
  30. 30.
    Yoneda A (1990) Pressure derivatives of elastic constants of single crystal MgO and MgAl2O4. J Phys Earth 38:19–55CrossRefGoogle Scholar
  31. 31.
    Weidner DJ, Wang H, Ito J (1978) Elasticity of orthoenstatite. Phys Earth Planet Inter 17:7–13CrossRefGoogle Scholar
  32. 32.
    Levien L, Weidner DJ, Prewitt CT (1979) Elasticity of diopside. Phys Chem Min 4:105–113CrossRefGoogle Scholar
  33. 33.
    Yamamoto J, Kagi H (2008) Application of micro-Raman densimeter for CO2 fluid inclusions: a probe for elastic strengths of mantle minerals. Eur J Mineral 20:529–535CrossRefGoogle Scholar
  34. 34.
    Yamamoto J, Otsuka K, Ohfuji H et al (2011) Retentivity of CO2 in fluid inclusions in mantle minerals. Eur J Mineral 23:805–815CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Hokkaido University MuseumSapporoJapan
  2. 2.Institute for Planetary MaterialsOkayama UniversityTottoriJapan
  3. 3.Japan Synchrotron Radiation Research Institute (JASRI)HyogoJapan
  4. 4.Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan

Personalised recommendations