Journal of Materials Science

, Volume 54, Issue 1, pp 383–395 | Cite as

Preparation of stable and high-efficient poly(m-phenylenediamine)/reduced graphene oxide composites for hexavalent chromium removal

  • Linfeng Jin
  • Lei Huang
  • Lili Ren
  • Yingjie He
  • Jingwen Tang
  • Sheng Wang
  • Weichun Yang
  • Haiying Wang
  • Liyuan Chai


Structural instability of polymers under strong acidic condition severely limits their application in the field of environment. A synthetic strategy for the preparation of poly(m-phenylenediamine)/reduced graphene oxide (PmPD/rGO) composites was proposed for Cr(VI) removal in strong acidic solution, which involved in situ reduction of graphene oxide (GO) and assembly of PmPD nanoparticles. Effects of in situ reduction of GO on oxidation polymerization, property and Cr(VI) adsorption capacity of composites were investigated methodically. Compared to pure PmPD, PmPD/rGO composites exhibited favorable stability in strong acidic solution. Moreover, the polymerization yield of PmPD/rGO composites increased from 75 to 91%. The maximum Cr(VI) adsorption capacity of composites calculated by the Langmuir model reached 526.24 mg g−1. The mechanisms of PmPD/rGO composites preparation and Cr(VI) removal were analyzed in detail. The synthetic strategy shows promising prospect to expand application of polymers, especially for Cr(VI) removal in strong acidic solution.



This research is financially supported by the National Key Research and Development Program of China (2016YFC0403003), the National Key Research and Development Program of China (2017YFC0210401).

Supplementary material

10853_2018_2844_MOESM1_ESM.docx (608 kb)
Supplementary material 1 (DOCX 607 kb)


  1. 1.
    Li Y, Cui W, Liu L, Zong R, Yao W, Liang Y, Zhu Y (2016) Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. Appl Catal B Environ 199:412–423CrossRefGoogle Scholar
  2. 2.
    Pan C, Troyer LD, Liao P, Catalano JG, Li W, Giammar DE (2017) Effect of humic acid on the removal of chromium(VI) and the production of solids in iron electrocoagulation. Environ Sci Technol 51:6308–6318CrossRefGoogle Scholar
  3. 3.
    Abdullah H, Gultom N, Kuo D (2017) Indium oxysulfide nanosheet photocatalyst for the hexavalent chromium detoxification and hydrogen evolution reaction. J Mater Sci 52:6249–6264. CrossRefGoogle Scholar
  4. 4.
    Dinda D, Gupta A, Saha SK (2013) Removal of toxic Cr(VI) by UV-active functionalized graphene oxide for water purification. J Mater Chem A 1:11221–11228CrossRefGoogle Scholar
  5. 5.
    Gheju M, Balcu I, Mosoarca G (2016) Removal of Cr(VI) from aqueous solutions by adsorption on MnO2. J Hazard Mater 310:270–277CrossRefGoogle Scholar
  6. 6.
    Liu W, Ni J, Yin X (2014) Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes. Water Res 53:12–25CrossRefGoogle Scholar
  7. 7.
    Shen C, Chen H, Wu S, Wen Y, Li L, Jiang Z, Li M, Liu W (2013) Highly efficient detoxification of Cr(VI) by chitosan-Fe(III) complex: process and mechanism studies. J Hazard Mater 244–245:689–697CrossRefGoogle Scholar
  8. 8.
    Wang T, Zhang L, Li C, Yang W, Song T, Tang C, Meng Y, Dai S, Wang H, Chai L, Luo J (2015) Synthesis of core-shell magnetic Fe3O4@poly(m-Phenylenediamine) particles for chromium reduction and adsorption. Environ Sci Technol 49:5654–5662CrossRefGoogle Scholar
  9. 9.
    Qi W, Zhao Y, Zheng X, Ji M, Zhang Z (2016) Adsorption behavior and mechanism of Cr(VI) using Sakura waste from aqueous solution. Appl Surf Sci 360:470–476CrossRefGoogle Scholar
  10. 10.
    Gong X, Li W, Wang K, Hu J (2013) Study of the adsorption of Cr(VI) by tannic acid immobilised powdered activated carbon from micro-polluted water in the presence of dissolved humic acid. Bioresour Technol 141:145–151CrossRefGoogle Scholar
  11. 11.
    Yu J, Zhao X, Yang H, Chen X, Yang Q, Yu L, Jiang J, Chen X (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482–483:241–251CrossRefGoogle Scholar
  12. 12.
    Chen R, Chai L, Li Q, Shi Y, Wang Y, Mohammad A (2013) Preparation and characterization of magnetic Fe3O4/CNT nanoparticles by RPO method to enhance the efficient removal of Cr(VI). Environ Sci Pollut Res 20:7175–7185CrossRefGoogle Scholar
  13. 13.
    Hong N, Xiaowen S, Yadong L, Chunxia L (2015) Solvothermal self-assembly of magnetic Fe3O4 nanochains by ethylenediamine functionalized nanoparticles for chromium(VI) removal. J Mater Sci 50:4270–4279. CrossRefGoogle Scholar
  14. 14.
    Zhao Y, Shen H, Pan S, Hu M, Xia Q (2010) Preparation and characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents for removal of chromium(VI) ions. J Mater Sci 45:5291–5301. CrossRefGoogle Scholar
  15. 15.
    Pan Y, Cai P, Farmahini-Farahani M, Li Y, Hou X, Xiao H (2016) Amino-functionalized alkaline clay with cationic star-shaped polymer as adsorbents for removal of Cr(VI) in aqueous solution. Appl Surf Sci 385:333–340CrossRefGoogle Scholar
  16. 16.
    Ren Z, Kong D, Wang K, Zhang W (2014) Preparation and adsorption characteristics of an imprinted polymer for selective removal of Cr(VI) ions from aqueous solutions. J Mater Chem A 2:17952–17961CrossRefGoogle Scholar
  17. 17.
    Hong S, Lee Y, Park H, Jin S, Jeong Y, Yun J, You I, Zi G, Ha J (2016) Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv Mater 28:930–935CrossRefGoogle Scholar
  18. 18.
    Liu Y, Li J, Li F, Li W, Yang H, Zhang X, Liu Y, Ma J (2016) A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction. J Mater Chem A 4:4472–4478CrossRefGoogle Scholar
  19. 19.
    Yan J, Li B, Liu X (2015) Nano-porous sulfur–polyaniline electrodes for lithium–sulfurbatteries. Nano Energy 18:245–252CrossRefGoogle Scholar
  20. 20.
    Baker CO, Huang XW, Nelson W, Kaner RB (2017) Polyaniline nanofibers: broadening applications for conducting polymers. Chem Soc Rev 46:1510–1525CrossRefGoogle Scholar
  21. 21.
    Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107CrossRefGoogle Scholar
  22. 22.
    Yang C, Zhang L, Hu N, Yang Z, Su Y, Xu S, Li M, Yao L, Hong M, Zhang Y (2017) Rational design of sandwiched polyaniline nanotube/layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors. Chem Eng J 309:89–97CrossRefGoogle Scholar
  23. 23.
    Li K, Guo D, Lin F, Wei Y, Liu W, Kong Y (2015) Electrosorption of copper ions by poly(m-phenylenediamine)/reduced graphene oxide synthesized via a one-step in situ redox strategy. Electrochim Acta 166:47–53CrossRefGoogle Scholar
  24. 24.
    Su Z, Zhang L, Chai L, Wang H, Yu W, Wang T, Yang J (2014) High-yield synthesis of poly(m-phenylenediamine) hollow nanostructures by a diethanolamine-assisted method and their enhanced ability for Ag+ adsorption. New J Chem 38:3984–3991CrossRefGoogle Scholar
  25. 25.
    Dai S, Peng B, Zhang L, Chai L, Wang T, Meng Y, Li X, Wang H, Luo J (2015) Sustainable synthesis of hollow Cu-loaded poly(m-phenylenediamine) particles and their application for arsenic removal. RSC Adv 5:29965–29974CrossRefGoogle Scholar
  26. 26.
    Chai L, Wang T, Zhang L, Wang H, Yang W, Dai S, Meng Y, Li X (2015) A Cu–m-phenylenediamine complex induced route to fabricate poly(m-phenylenediamine)/reduced graphene oxide hydrogel and its adsorption application. Carbon 81:748–757CrossRefGoogle Scholar
  27. 27.
    Wang H, Li X, Chai L, Zhang L (2015) Nano-functionalized filamentous fungus hyphae with fast reversible macroscopic assembly & disassembly features. Chem Commun 51:8524–8527CrossRefGoogle Scholar
  28. 28.
    Zhang L, Li X, Wang M, He Y, Chai L, Huang J, Wang H, Wu X, Lai Y (2016) Highly flexible and porous nanoparticle-loaded films for dye removal by graphene oxide-fungus interaction. ACS Appl Mater Interfaces 8:34638–34647CrossRefGoogle Scholar
  29. 29.
    Zhang L, Wang H, Yu W, Su Z, Chai L, Li J, Shi Y (2012) Facile and large-scale synthesis of functional poly(m-phenylenediamine) nanoparticles by Cu2+-assisted method with superior ability for dye adsorption. J Mater Chem 22:18244–18251CrossRefGoogle Scholar
  30. 30.
    Yu W, Zhang L, Wang H, Chai L (2013) Adsorption of Cr(VI) using synthetic poly(m-phenylenediamine). J Hazard Mater 260:789–795CrossRefGoogle Scholar
  31. 31.
    Yadav S, Srivastava V, Banerjee S, Weng C, Sharma YC (2013) Adsorption characteristics of modified sand for the removal of hexavalent chromium ions from aqueous solutions: kinetic, thermodynamic and equilibrium studies. Catena 100:120–127CrossRefGoogle Scholar
  32. 32.
    Hu J, Chen C, Zhu X, Wang X (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater 162:1542–1550CrossRefGoogle Scholar
  33. 33.
    Ibarra LE, Bongiovanni S, Barbero CA, Rivarola VA, Bertuzzi ML, Yslas EI (2016) The chronic toxicity of Pani-Nps to the larvae stage of rhinella arenarum. J Nanosci Nanotechnol 16:7983–7988CrossRefGoogle Scholar
  34. 34.
    Ibarra LE, Tarres L, Bongiovanni S, Barbero CA, Kogan MJ, Rivarola VA, Bertuzzi ML, Yslas EI (2015) Assessment of polyaniline nanoparticles toxicity and teratogenicity in aquatic environment using Rhinella arenarum model. Ecotoxicol Environ Saf 114:84–92CrossRefGoogle Scholar
  35. 35.
    Chávez Guajardo AE, Medina Llamas JC, Maqueira L, Andrade CAS, Alves KGB, de Melo CP (2015) Efficient removal of Cr(VI) and Cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem Eng J 281:826–836CrossRefGoogle Scholar
  36. 36.
    Guo F, Mi H, Zhou J, Zhao Z, Qiu J (2015) Hybrid pseudocapacitor materials from polyaniline@multi-walled carbon nanotube with ultrafine nanofiber-assembled network shell. Carbon 95:323–329CrossRefGoogle Scholar
  37. 37.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Zhengzong S, Slesarev A, Alemany LB, Wei L, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRefGoogle Scholar
  38. 38.
    Yang Z, Liang L, Yang W, Shi W, Tong Y, Chai L, Gao S, Liao Q (2018) Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites. Environ Sci Pollut Res. CrossRefGoogle Scholar
  39. 39.
    Chai L, Wang X, Wang H, Yang W, Liao Q, Wu Y (2017) Formation of one-dimensional composites of poly(m-phenylenediamine)s based on streptomyces for adsorption of hexavalent chromium. Int J Environ Sci Technol 15:1411–1422CrossRefGoogle Scholar
  40. 40.
    Wu Z, Zhong H, Yuan X, Wang H, Wang L, Chen X, Zeng G, Wu Y (2014) Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res 67:330–344CrossRefGoogle Scholar
  41. 41.
    Xu Y, Shi G, Duan X (2015) Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc Chem Res 48:1666–1675CrossRefGoogle Scholar
  42. 42.
    Li X, Huang M, Duan W (2002) Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem Rev 102:2925–3030CrossRefGoogle Scholar
  43. 43.
    Shen Y, Chen B (2015) Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water. Environ Sci Technol 49:7364–7372CrossRefGoogle Scholar
  44. 44.
    Wang J, Chen B (2015) Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem Eng J 281:379–388CrossRefGoogle Scholar
  45. 45.
    Zhang L, Wang T, Wang H, Meng Y, Yu W, Chai L (2013) Graphene@poly(m-phenylenediamine) hydrogel fabricated by a facile post-synthesis assembly strategy. Chem Commun 49:9974–9976CrossRefGoogle Scholar
  46. 46.
    Zhang L, Chai L, Liu J, Wang H, Yu W, Sang P (2011) pH manipulation: a facile method for lowering oxidation state and keeping good yield of poly(m-phenylenediamine) and its powerful Ag + adsorption ability. Langmuir 27:13729–13738CrossRefGoogle Scholar
  47. 47.
    Jiang L, Liu Y, Zeng G, Xiao F, Hu X, Hu X, Wang H, Li T, Zhou L, Tan X (2016) Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: external influence and adsorption mechanism. Chem Eng J 284:93–102CrossRefGoogle Scholar
  48. 48.
    Jin Z, Wang X, Sun Y, Ai Y, Wang X (2015) Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies. Environ Sci Technol 49:9168–9175CrossRefGoogle Scholar
  49. 49.
    Qu L, Wang N, Xu H, Wang W, Liu Y, Kuo L, Yadav TP, Wu J, Joyner J, Song Y, Li H, Lou J, Vajtai R, Ajayan PM (2017) Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced raman scattering. Adv Funct Mater 27:1701714CrossRefGoogle Scholar
  50. 50.
    Wu Z, Yang S, Chen Z, Zhang T, Guo T, Wang Z, Liao F (2013) Synthesis of Ag nanoparticles-decorated poly(m-phenylenediamine) hollow spheres and the application for hydrogen peroxide detection. Electrochim Acta 98:104–108CrossRefGoogle Scholar
  51. 51.
    Huang M, Lu H, Song W, Li X (2010) Dynamic reversible adsorption and desorption of lead ions through a packed column of poly(m-phenylenediamine) spheroids. Soft Mater 8:149–163CrossRefGoogle Scholar
  52. 52.
    Krishna Kumar AS, Jiang S-J, Tseng W-L (2015) Effective adsorption of chromium(VI)/Cr(III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. J Mater Chem A 3:7044–7057CrossRefGoogle Scholar
  53. 53.
    Wang H, Yuan X, Wu Y, Chen X, Leng L, Wang H, Li H, Zeng G (2015) Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem Eng J 262:597–606CrossRefGoogle Scholar
  54. 54.
    Wang J, Zhang K, Zhao L (2014) Sono-assisted synthesis of nanostructured polyaniline for adsorption of aqueous Cr(VI): effect of protonic acids. Chem Eng J 239:123–131CrossRefGoogle Scholar
  55. 55.
    Sun X, Yang L, Li Q, Zhao J, Li X, Wang X, Liu H (2014) Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): synthesis and adsorption studies. Chem Eng J 241:175–183CrossRefGoogle Scholar
  56. 56.
    Yang Z, Ren L, Jin L, Huang L, He Y, Tang J, Yang W, Wang H (2018) In-situ functionalization of poly(m-phenylenediamine) nanoparticles on bacterial cellulose for chromium removal. Chem Eng J 344:441–452CrossRefGoogle Scholar
  57. 57.
    Ge H, Ma Z (2015) Microwave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI). Carbohydr Polym 131:280–287CrossRefGoogle Scholar
  58. 58.
    Kera NH, Bhaumik M, Pillay K, Ray SS, Maity A (2017) Selective removal of toxic Cr(VI) from aqueous solution by adsorption combined with reduction at a magnetic nanocomposite surface. J Colloid Interface Sci 503:214–228CrossRefGoogle Scholar
  59. 59.
    Zhao D, Gao X, Wu C, Xie R, Feng S, Chen C (2016) Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(VI). Appl Surf Sci 384:1–9CrossRefGoogle Scholar
  60. 60.
    Tang L, Yang G, Zeng G, Cai Y, Li S, Zhou Y, Pang Y, Liu Y, Zhang Y, Luna B (2014) Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chem Eng J 239:114–122CrossRefGoogle Scholar
  61. 61.
    Yang R, Wang Y, Li M, Hong Y (2014) A New carbon/ferrous sulfide/iron composite prepared by an in situ carbonization reduction method from hemp (Cannabis sativa L.) stems and its Cr(VI) Removal ability. ACS Sustain Chem Eng 2:1270–1279CrossRefGoogle Scholar
  62. 62.
    Wang Y, Peng B, Yang Z, Tang C, Chen Y, Liao Q, Liao Y (2013) Treatment of Cr(VI) contaminated water with Pannonibacter phragmitetus BB. Environ Earth Sci 71:4333–4339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental Engineering, School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Chinese National Engineering Research Center for Control and Treatment of Heavy Metals PollutionChangshaChina

Personalised recommendations