Advertisement

Journal of Materials Science

, Volume 54, Issue 1, pp 238–251 | Cite as

Synthesis of highly dispersed gold nanoparticles on Al2O3, SiO2, and TiO2 for the solvent-free oxidation of benzyl alcohol under low metal loadings

  • Jesus A. D. Gualteros
  • Marco A. S. Garcia
  • Anderson G. M. da Silva
  • Thenner S. Rodrigues
  • Eduardo G. Cândido
  • Felipe A. e Silva
  • Fabio C. Fonseca
  • Jhon Quiroz
  • Daniela C. de Oliveira
  • Susana I. Córdoba de Torresi
  • Carla V. R. de Moura
  • Pedro H. C. Camargo
  • Edmilson M. de Moura
Chemical routes to materials
  • 411 Downloads

Abstract

We reported the organic template-free synthesis of gold (Au) nanoparticles (NPs) supported on TiO2, SiO2, and Al2O3 displaying uniform Au sizes and high dispersions over the supports. The Au-based catalysts were prepared by a deposition–precipitation method using urea as the precipitating agent. In the next step, the solvent-free oxidation of benzyl alcohol was investigated as model reaction using only 0.08–0.05 mol% of Au loadings and oxygen (O2) as the oxidant. Very high catalytic performances (TOF up to 443,624 h−1) could be achieved. Specifically, we investigated their catalytic activities, selectivity, and stabilities as well as the role of metal–support interactions over the performances. The conversion of the substrate was found to be associated with the nature of the employed support as the Au NPs presented similar sizes in all materials. A sub-stoichiometric amount of base was sufficient for the catalyst activation and the observation of the catalysts profile over the time enable insights on their recyclability performances. We believe this reported method represents a facile approach for the synthesis of uniform Au-supported catalysts displaying high performances.

Notes

Acknowledgements

This work was supported by FAPESP (Grant Numbers 2014/09087-4, 2014/50279-4, 15/21366-9, and 17/12407-9). F.C.F. and P.H.C.C. thank the CNPq for their research fellowships. T.S.R. and A.G.M.S. thank the FAPESP for their fellowships. E.G.C. and F.A.S. thank CNPq for their fellowships. M.A.S.G thanks CAPES for his research fellowship. J.A.D.G thanks PAEC/OEA for his fellowship.

Supplementary material

10853_2018_2827_MOESM1_ESM.docx (82 kb)
Supplementary material 1 (DOCX 81 kb)

References

  1. 1.
    Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126.  https://doi.org/10.1039/b707314n CrossRefGoogle Scholar
  2. 2.
    Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112:4469–4506.  https://doi.org/10.1021/cr3000785 CrossRefGoogle Scholar
  3. 3.
    Luza L, Rambor CP, Gual A et al (2017) Revealing hydrogenation reaction pathways on naked gold nanoparticles. ACS Catal 7:2791–2799.  https://doi.org/10.1021/acscatal.7b00391 CrossRefGoogle Scholar
  4. 4.
    Mitsudome T, Kaneda K (2013) Gold nanoparticle catalysts for selective hydrogenations. Green Chem 15:2636–2654.  https://doi.org/10.1039/c3gc41360h CrossRefGoogle Scholar
  5. 5.
    Bond GC (2016) Hydrogenation by gold catalysts: an unexpected discovery and a current assessment. Gold Bull 49:53–61.  https://doi.org/10.1007/s13404-016-0182-8 CrossRefGoogle Scholar
  6. 6.
    Rodrigues TS, Silva AGM, Macedo A et al (2015) Probing the catalytic activity of bimetallic versus trimetallic nanoshells. J Mater Sci 50:5620–5629.  https://doi.org/10.1007/s10853-015-9114-x CrossRefGoogle Scholar
  7. 7.
    Li G, Jin R (2013) Catalysis by gold nanoparticles: carbon–carbon coupling reactions. Nanotechnol Rev 2:529–545.  https://doi.org/10.1515/ntrev-2013-0020 CrossRefGoogle Scholar
  8. 8.
    Milone C, Trapani M, Zanella R et al (2010) Deposition-precipitation with urea to prepare Au/Mg(OH)2 catalysts: influence of the preparation conditions on metal size and load. Mater Res Bull 45:1925–1933.  https://doi.org/10.1016/j.materresbull.2010.08.014 CrossRefGoogle Scholar
  9. 9.
    Lanterna AE, Elhage A, Scaiano JC (2015) Heterogeneous photocatalytic C–C coupling: mechanism of plasmon-mediated reductive dimerization of benzyl bromides by supported gold nanoparticles. Catal Sci Technol 5:4336–4340.  https://doi.org/10.1039/c5cy00655d CrossRefGoogle Scholar
  10. 10.
    da Silva AGM, Kisukuri CM, Rodrigues TS et al (2016) MnO2 nanowires decorated with Au ultrasmall nanoparticles for the green oxidation of silanes and hydrogen production under ultralow loadings. Appl Catal B Environ 184:35–43.  https://doi.org/10.1016/j.apcatb.2015.11.023 CrossRefGoogle Scholar
  11. 11.
    Alhumaimess M, Lin Z, Weng W et al (2012) Oxidation of benzyl alcohol by using gold nanoparticles supported on ceria foam. Chemsuschem 5:125–131.  https://doi.org/10.1002/cssc.201100374 CrossRefGoogle Scholar
  12. 12.
    Castro KPR, Garcia MAS, de Abreu WC et al (2018) Aerobic oxidation of benzyl alcohol on a strontium-based gold material: remarkable intrinsic basicity and reusable catalyst. Catalysts 8:83.  https://doi.org/10.3390/catal8020083 CrossRefGoogle Scholar
  13. 13.
    Fang W, Chen J, Zhang Q et al (2011) Hydrotalcite-supported gold catalyst for the oxidant-free dehydrogenation of benzyl alcohol: studies on support and gold size effects. Chem A Eur J 17:1247–1256.  https://doi.org/10.1002/chem.201002469 CrossRefGoogle Scholar
  14. 14.
    Oliveira AAS, Costa DS, Teixeira IF et al (2017) Red mud based gold catalysts in the oxidation of benzyl alcohol with molecular oxygen. Catal Today 289:89–95.  https://doi.org/10.1016/j.cattod.2016.10.028 CrossRefGoogle Scholar
  15. 15.
    Wang H, Shi Y, Haruta M, Huang J (2017) Aerobic oxidation of benzyl alcohol in water catalyzed by gold nanoparticles supported on imidazole containing crosslinked polymer. Appl Catal A Gen 536:27–34.  https://doi.org/10.1016/j.apcata.2017.02.015 CrossRefGoogle Scholar
  16. 16.
    Guo D, Wang Y, Zhao P et al (2016) Selective aerobic oxidation of benzyl alcohol driven by visible light on gold nanoparticles supported on hydrotalcite modified by nickel ion. Catalysts 6:64.  https://doi.org/10.3390/catal6050064 CrossRefGoogle Scholar
  17. 17.
    Hernández WY, Aliç F, Navarro-Jaen S et al (2017) Structural and catalytic properties of Au/MgO-type catalysts prepared in aqueous or methanol phase: application in the CO oxidation reaction. J Mater Sci 52:4727–4741.  https://doi.org/10.1007/s10853-016-0715-9 CrossRefGoogle Scholar
  18. 18.
    Wu P, Bai P, Yan Z, Zhao GXS (2016) Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane. Sci Rep 6:18817.  https://doi.org/10.1038/srep18817 CrossRefGoogle Scholar
  19. 19.
    Tanaka S, Lin J, Kaneti YV et al (2018) Gold nanoparticles supported on mesoporous iron oxide for enhanced CO oxidation reaction. Nanoscale.  https://doi.org/10.1039/c7nr08895g CrossRefGoogle Scholar
  20. 20.
    de Abreu WC, Garcia MAS, Nicolodi S et al (2018) Magnesium surface enrichment of CoFe2O4 magnetic nanoparticles immobilized with gold: reusable catalysts for green oxidation of benzyl alcohol. RSC Adv 8:3903–3909.  https://doi.org/10.1039/c7ra13590d CrossRefGoogle Scholar
  21. 21.
    Ballarin B, Barreca D, Boanini E et al (2017) Supported gold nanoparticles for alcohols oxidation in continuous-flow heterogeneous systems. ACS Sustain Chem Eng 5:4746–4756.  https://doi.org/10.1021/acssuschemeng.7b00133 CrossRefGoogle Scholar
  22. 22.
    Sharma AS, Kaur H, Shah D (2016) Selective oxidation of alcohols by supported gold nanoparticles: recent advances. RSC Adv 6:28688–28727.  https://doi.org/10.1039/c5ra25646a CrossRefGoogle Scholar
  23. 23.
    Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451.  https://doi.org/10.1039/c1cs15219j CrossRefGoogle Scholar
  24. 24.
    Camargo PHC, Rodrigues TS, Silva AGM, Wang J (2015) Metallic nanostructures. Springer, Berlin.  https://doi.org/10.1007/978-3-319-11304-3 CrossRefGoogle Scholar
  25. 25.
    Haruta M (2003) When gold is not noble: catalysis by nanoparticles. Chem Rec 3:75–87.  https://doi.org/10.1002/tcr.10053 CrossRefGoogle Scholar
  26. 26.
    Chen X, Zhu H (2011) Catalysis by supported gold nanoparticles. In: Andrews D, Scholes G, Wiederrecht G (eds) Comprehensive nanoscience and technology, vol 3. Elsevier, Amsterdam, pp 1–11Google Scholar
  27. 27.
    Rodríguez-Reyes JCF, Friend CM, Madix RJ (2012) Origin of the selectivity in the gold-mediated oxidation of benzyl alcohol. Surf Sci 606:1129–1134.  https://doi.org/10.1016/j.susc.2012.03.013 CrossRefGoogle Scholar
  28. 28.
    Tchaplyguine M, Mikkelä MH, Zhang C et al (2015) Gold oxide nanoparticles with variable gold oxidation state. J Phys Chem C 119:8937–8943.  https://doi.org/10.1021/acs.jpcc.5b00811 CrossRefGoogle Scholar
  29. 29.
    Rossi LM, Fiorio JL, Garcia MAS, Ferraz CP (2018) Role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Trans.  https://doi.org/10.1039/c7dt04728b CrossRefGoogle Scholar
  30. 30.
    da Silva AGM, Rodrigues TS, Slater TJA et al (2015) Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings. ACS Appl Mater Interfaces 7:25624–25632.  https://doi.org/10.1021/acsami.5b08725 CrossRefGoogle Scholar
  31. 31.
    Kisukuri CM, Palmeira DJ, Rodrigues TS et al (2016) Bimetallic nanoshells as platforms for metallo- and biometallo-catalytic applications. ChemCatChem 8:171–179.  https://doi.org/10.1002/cctc.201500812 CrossRefGoogle Scholar
  32. 32.
    da Silva AGM, Rodrigues TS, Haigh SJ, Camargo PHC (2017) Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chem Commun 53:7135–7148.  https://doi.org/10.1039/c7cc02352a CrossRefGoogle Scholar
  33. 33.
    Shanahan AE, Sullivan JA, McNamara M, Byrne HJ (2011) Preparation and characterization of a composite of gold nanoparticles and single-walled carbon nanotubes and its potential for heterogeneous catalysis. Xinxing Tan Cailiao/New Carbon Mater 26:347–355.  https://doi.org/10.1016/s1872-5805(11)60087-5 CrossRefGoogle Scholar
  34. 34.
    Ben Haddada M, Blanchard J, Casale S et al (2013) Optimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: amine- vs thiol-terminated silane. Gold Bull 46:335–341.  https://doi.org/10.1007/s13404-013-0120-y CrossRefGoogle Scholar
  35. 35.
    Aureau D, Varin Y, Roodenko K et al (2010) Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces. J Phys Chem C 114:14180–14186.  https://doi.org/10.1021/jp104183m CrossRefGoogle Scholar
  36. 36.
    Lopez-Sanchez JA, Dimitratos N, Hammond C et al (2011) Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat Chem 3:551–556.  https://doi.org/10.1038/nchem.1066 CrossRefGoogle Scholar
  37. 37.
    Tsubota S, Haruta M, Kobayashi T et al (1991) Preparation of highly dispersed gold on titanium and magnesium oxide. Stud Surf Sci Catal 63:695–704.  https://doi.org/10.1016/s0167-2991(08)64634-0 CrossRefGoogle Scholar
  38. 38.
    Zanella R, Giorgio S, Henry CR, Louis C (2002) Alternative methods for the preparation of gold nanoparticles supported on TiO2. J Phys Chem B 106:7634–7642.  https://doi.org/10.1021/jp0144810 CrossRefGoogle Scholar
  39. 39.
    Geus JW. Utrecht, pp 113–130Google Scholar
  40. 40.
    de Moura EM, Garcia MAS, Gonçalves RV et al (2015) Gold nanoparticles supported on magnesium ferrite and magnesium oxide for the selective oxidation of benzyl alcohol. RSC Adv 5:15035–15041.  https://doi.org/10.1039/c4ra16159a CrossRefGoogle Scholar
  41. 41.
    Mirescu A, Berndt H, Martin A, Prüße U (2007) Long-term stability of a 0.45% Au/TiO2 catalyst in the selective oxidation of glucose at optimised reaction conditions. Appl Catal A Gen 317:204–209.  https://doi.org/10.1016/j.apcata.2006.10.016 CrossRefGoogle Scholar
  42. 42.
    Abad A, Concepción P, Corma A, García H (2005) A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew Chem Int Ed 44:4066–4069.  https://doi.org/10.1002/anie.200500382 CrossRefGoogle Scholar
  43. 43.
    Ke Y-H, Qin X-X, Liu C-L et al (2014) Oxidative esterification of ethylene glycol in methanol to form methyl glycolate over supported Au catalysts. Catal Sci Technol 4:3141–3150.  https://doi.org/10.1039/c4cy00556b CrossRefGoogle Scholar
  44. 44.
    Catalysis of gold nanoparticles deposited on metal oxides.pdfGoogle Scholar
  45. 45.
    Okumura M, Tsubota S, Iwamoto M, Haruta M (1998) Chemical vapor deposition of gold nanoparticles on MCM-41 and their catalytic activities for the low-temperature oxidation of CO and of H2. Chem Lett 27:315–316.  https://doi.org/10.1246/cl.1998.315 CrossRefGoogle Scholar
  46. 46.
    Prati L, Rossi M (1998) Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J Catal 176:552–560.  https://doi.org/10.1006/jcat.1998.2078 CrossRefGoogle Scholar
  47. 47.
    Prati L, Martra G (1999) New gold catalysts for liquid phase oxidation. Gold Bull 32:96–101.  https://doi.org/10.1007/bf03216617 CrossRefGoogle Scholar
  48. 48.
    Porta F, Prati L, Rossi M et al (2000) Metal sols as a useful tool for heterogeneous gold catalyst preparation: reinvestigation of a liquid phase oxidation. Catal Today 61:165–172.  https://doi.org/10.1016/s0920-5861(00)00370-9 CrossRefGoogle Scholar
  49. 49.
    Gu D, Tseng JC, Weidenthaler C et al (2016) Gold on different manganese oxides: ultra-low-temperature CO oxidation over colloidal gold supported on bulk-MnO2 nanomaterials. J Am Chem Soc 138:9572–9580.  https://doi.org/10.1021/jacs.6b04251 CrossRefGoogle Scholar
  50. 50.
    Chang LY, Barnard AS, Gontard LC, Dunin-Borkowski RE (2010) Resolving the structure of active sites on platinum catalytic nanoparticles. Nano Lett 10:3073–3076.  https://doi.org/10.1021/nl101642f CrossRefGoogle Scholar
  51. 51.
    Yoshitake H, Iwasawa Y (1992) Electronic metal support interaction in platinum catalysts under deuterium–ethene reaction conditions and the microscopic nature of the active sites. J Phys Chem 96:1329–1334.  https://doi.org/10.1021/j100182a057 CrossRefGoogle Scholar
  52. 52.
    Souza MCP, Lenzi GG, Colpini LMS et al (2011) Photocatalytic discoloration of reactive blue 5G dye in the presence of mixed oxides and with the addition of iron and silver. Braz J Chem Eng 28:393–402.  https://doi.org/10.1590/s0104-66322011000300005 CrossRefGoogle Scholar
  53. 53.
    Dimas-Rivera GL, de la Rosa JR, Lucio-Ortiz CJ et al (2014) Desorption of furfural from bimetallic Pt–Fe oxides/alumina catalysts. Materials (Basel) 7:527–541.  https://doi.org/10.3390/ma7010527 CrossRefGoogle Scholar
  54. 54.
    Oliveira RL, Bitencourt IG, Passos FB (2013) Partial oxidation of methane to syngas on Rh/Al2O3 and Rh/Ce-ZrO2 catalysts. J Braz Chem Soc 24:68–75.  https://doi.org/10.1590/s0103-50532013000100010 CrossRefGoogle Scholar
  55. 55.
    Rodrigues TS, da Silva AGM, Gonçalves MC et al (2016) Catalytic properties of AgPt nanoshells as a function of size: larger outer diameters lead to improved performances. Langmuir 32:9371–9379.  https://doi.org/10.1021/acs.langmuir.6b01783 CrossRefGoogle Scholar
  56. 56.
    van Steen E, Sewell GS, Makhothe RA et al (1996) TPR study on the preparation of impregnated Co/SiO2 catalysts. J Catal 162:220–229.  https://doi.org/10.1006/jcat.1996.0279 CrossRefGoogle Scholar
  57. 57.
    Perini L, Durante C, Favaro M et al (2015) Metal–support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Appl Mater Interfaces 7:1170–1179.  https://doi.org/10.1021/am506916y CrossRefGoogle Scholar
  58. 58.
    Lunkenbein T, Schumann J, Behrens M et al (2015) Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal–support interactions. Angew Chem 127:4627–4631.  https://doi.org/10.1002/ange.201411581 CrossRefGoogle Scholar
  59. 59.
    Carrasco J, López-Durán D, Liu Z et al (2015) in situ and theoretical studies for the dissociation of water on an active Ni/CeO2 catalyst: importance of strong metal–support interactions for the cleavage of O–H bonds. Angew Chem Int Ed 54:3917–3921.  https://doi.org/10.1002/anie.201410697 CrossRefGoogle Scholar
  60. 60.
    Fang J, Li J, Zhang B et al (2015) The support effect on the size and catalytic activity of thiolated Au25 nanoclusters as precatalysts. Nanoscale 7:6325–6333.  https://doi.org/10.1039/c5nr00549c CrossRefGoogle Scholar
  61. 61.
    da Silva AHM, Rodrigues TS, da Silva AGM et al (2017) Systematic investigation of the effect of oxygen mobility on CO oxidation over AgPt nanoshells supported on CeO2, TiO2 and Al2O3. J Mater Sci 52:13764–13778.  https://doi.org/10.1007/s10853-017-1481-z CrossRefGoogle Scholar
  62. 62.
    Li Y, Zheng Y, Wang L, Fu Z (2017) Oxidative esterification of methacrolein to methyl methacrylate over supported gold catalysts prepared by colloid deposition. ChemCatChem 9:1960–1968.  https://doi.org/10.1002/cctc.201601688 CrossRefGoogle Scholar
  63. 63.
    Tsutsumi K, Mitani Y, Takahashi H (1983) Direct measurement of the interaction energy between solids and gases. Ix. Heats of adsorption of ammonia and pyridine on several solids at high temperature. Bull Chem Soc Jpn 56:1912–1916CrossRefGoogle Scholar
  64. 64.
    Today C, Universit Z, Universit CL (1998) Surface acidity and basicity: general concepts. Catal Today 41:169–177.  https://doi.org/10.1016/s0920-5861(98)00047-9 CrossRefGoogle Scholar
  65. 65.
    Ferraz CP, Garcia MAS, Teixeira-Neto É, Rossi LM (2016) Oxidation of benzyl alcohol catalyzed by gold nanoparticles under alkaline conditions: weak vs. strong bases. RSC Adv 6:25279–25285.  https://doi.org/10.1039/c6ra01795a CrossRefGoogle Scholar
  66. 66.
    Roduner E (2014) Understanding catalysis. Chem Soc Rev 43:8226–8239.  https://doi.org/10.1039/c4cs00210e CrossRefGoogle Scholar
  67. 67.
    Ntho T, Aluha J, Gqogqa P et al (2013) Au/γ-Al2O3 catalysts for glycerol oxidation: the effect of support acidity and gold particle size. React Kinet Mech Catal 109:133–148.  https://doi.org/10.1007/s11144-013-0542-9 CrossRefGoogle Scholar
  68. 68.
    Okumura M, Tsubota S, Haruta M (2003) Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2. J Mol Catal A Chem 199:73–84.  https://doi.org/10.1016/s1381-1169(03)00020-7 CrossRefGoogle Scholar
  69. 69.
    Saavedra J, Pursell CJ, Chandler BD (2018) CO oxidation kinetics over Au/TiO2 and Au/Al2O3 catalysts: evidence for a common water-assisted mechanism. J Am Chem Soc.  https://doi.org/10.1021/jacs.7b12758 CrossRefGoogle Scholar
  70. 70.
    Helwani Z, Othman MR, Aziz N et al (2009) Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl Catal A Gen 363:1–10.  https://doi.org/10.1016/j.apcata.2009.05.021 CrossRefGoogle Scholar
  71. 71.
    Yang K, Meng C, Lin L et al (2016) A heterostructured TiO2–C3N4 support for gold catalysts: a superior preferential oxidation of CO in the presence of H2 under visible light irradiation and without visible light irradiation. Catal Sci Technol 6:829–839.  https://doi.org/10.1039/c5cy01009h CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jesus A. D. Gualteros
    • 1
  • Marco A. S. Garcia
    • 1
  • Anderson G. M. da Silva
    • 2
  • Thenner S. Rodrigues
    • 3
  • Eduardo G. Cândido
    • 3
  • Felipe A. e Silva
    • 3
  • Fabio C. Fonseca
    • 3
  • Jhon Quiroz
    • 2
  • Daniela C. de Oliveira
    • 4
  • Susana I. Córdoba de Torresi
    • 2
  • Carla V. R. de Moura
    • 1
  • Pedro H. C. Camargo
    • 2
  • Edmilson M. de Moura
    • 1
  1. 1.Departamento de QuímicaUniversidade Federal do PiauíTeresinaBrazil
  2. 2.Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  3. 3.Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNENSão PauloBrazil
  4. 4.Laboratório Nacional de Luz SíncrotronCentro Nacional de Pesquisa em Energia e MateriaisCampinasBrazil

Personalised recommendations