Advertisement

Journal of Materials Science

, Volume 54, Issue 1, pp 217–227 | Cite as

Photothermal conversion performance of perylene diimide radical anion salts modified with tunable moieties

  • Qizhe Li
  • Wenlong Hou
  • Fei Peng
  • Hailong Wang
  • Shuo Zhang
  • Danyang Dong
  • Siyu Wu
  • Haiquan ZhangEmail author
Chemical routes to materials

Abstract

Among photothermal materials, perylene diimide radical anions were promising organic candidates with intense and characteristic near-infrared (NIR) absorption bands and non-fluorescence. Herein, two isolable and ambient stable bay-substituted perylene diimide radical anion salts, namely DBrPDI radical anion salt and TPPDI radical anion salt, were facilely prepared and confirmed by using a very thorough analysis based on the data from UV–Vis/NIR, FL, FTIR, EPR and NMR spectra. Subsequently, two radical anion salts were applied as photothermal conversion agents. DBrPDI radical anion salt exhibited high-performance photothermal conversion in DMF solutions, however a decline in aqueous solution. TPPDI radical anion salt with bulky moieties onto the PDI cores and amine position gave substantial evidence that the photothermal properties could be optimized and enhanced in aqueous solution by modulating the chemical structure of the photothermal conversion agent.

Notes

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos: 51472214, 51173155) and the Natural Science Foundation of Hebei Province (No: E2017203247). We also show our gratitude to Prof. Leilei Tian (South University of Science and Technology of China, Shenzhen) for photothermal conversion measurement.

Compliance with ethical standards

Conflict of interest

The authors declare there is no conflict of interest.

Supplementary material

10853_2018_2822_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1670 kb)

References

  1. 1.
    Zha Z, Yue X, Ren Q et al (2013) form polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 25(5):777–782CrossRefGoogle Scholar
  2. 2.
    Li B, Wang Q, Zou R et al (2014) Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale 6(6):3274–3282CrossRefGoogle Scholar
  3. 3.
    Liu X, Li B, Fu F et al (2014) Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Dalton Trans 43(30):11709–11715CrossRefGoogle Scholar
  4. 4.
    Jiao Y, Liu K, Wang G et al (2015) Supramolecular free radicals: near-infrared organic materials with enhanced photothermal conversion. Chem Sci 6(7):3975–3980CrossRefGoogle Scholar
  5. 5.
    Chen H, Shao L, Ming T et al (2010) Understanding the photothermal conversion efficiency of gold nanocrystals. Small 6(20):2272–2280CrossRefGoogle Scholar
  6. 6.
    Ma Y, Tong S, Bao G et al (2013) Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials 34(31):7706–7714CrossRefGoogle Scholar
  7. 7.
    Robinson JT, Tabakman SM, Liang Y et al (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831CrossRefGoogle Scholar
  8. 8.
    Tian Q, Jiang F, Zou R et al (2011) Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 5(12):9761–9771CrossRefGoogle Scholar
  9. 9.
    Tong H, Ouyang S, Bi Y et al (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24(2):229–251CrossRefGoogle Scholar
  10. 10.
    Mahata K, Frischmann PD, Würthner F (2013) Giant electroactive M4L6 tetrahedral host self-assembled with Fe(II) vertices and perylene bisimide dye edges. J Am Chem Soc 135(41):15656–15661CrossRefGoogle Scholar
  11. 11.
    Huang C, Barlow S, Marder SR (2011) Perylene-3, 4, 9, 10-tetracarboxylic acid diimides: synthesis, physical properties, and use in organic electronics. J Org Chem 76(8):2386–2407CrossRefGoogle Scholar
  12. 12.
    Zhou E, Tajima K, Yang C et al (2010) Band gap and molecular energy level control of perylene diimide-based donor–acceptor copolymers for all-polymer solar cells. J Mater Chem 20(12):2362–2368CrossRefGoogle Scholar
  13. 13.
    Gosztola D, Niemczyk MP, Svec W et al (2000) Excited doublet states of electrochemically generated aromatic imide and diimide radical anions. J Phys Chem A 104(28):6545–6551CrossRefGoogle Scholar
  14. 14.
    Iron MA, Cohen R, Rybtchinski B (2011) On the unexpected stability of the dianion of perylene diimide in water-a computational study. J Phys Chem A 115(10):2047–2056CrossRefGoogle Scholar
  15. 15.
    Li Q, Guo H, Yang X et al (2017) Synthesis, characterization, photophysical properties and stability of bay-substituted tetrachloro-perylene diimide dianion salt by alkali treatment. Tetrahedron 73(47):6632–6636CrossRefGoogle Scholar
  16. 16.
    Jiao Y, Liu K, Wang G et al (2015) Supramolecular free radicals: near-infrared organic materials with enhanced photothermal conversion. Chem Sci 6(7):3975–3980CrossRefGoogle Scholar
  17. 17.
    Santos ER, Pina J, Venâncio T et al (2016) Photoinduced energy and electron-transfer reactions by polypyridine ruthenium (II) complexes containing a derivatized perylene diimide. J Phys Chem C 120(40):22831–22843CrossRefGoogle Scholar
  18. 18.
    Shirman E, Ustinov A, Ben-Shitrit N et al (2008) Stable aromatic dianion in water. J Phys Chem B 112(30):8855–8858CrossRefGoogle Scholar
  19. 19.
    Pluczyk S, Kuznik W, Lapkowski M et al (2014) The effect of the linking topology on the electrochemical and spectroelectrochemical properties of carbazolyl substituted perylene bisimides. Electrochim Acta 135:487–494CrossRefGoogle Scholar
  20. 20.
    Schmidt D, Bialas D, Würthner F (2015) Ambient stable zwitterionic perylene bisimide-centered radical. Angew Chem Int Ed 54(12):3611–3614CrossRefGoogle Scholar
  21. 21.
    Seifert S, Schmidt D, Würthner F (2015) An ambient stable core-substituted perylene bisimide dianion: isolation and single crystal structure analysis. Chem Sci 6(3):1663–1667CrossRefGoogle Scholar
  22. 22.
    Suzuki S, Morita Y, Fukui K et al (2006) Aromaticity on the pancake-bonded dimer of neutral phenalenyl radical as studied by MS and NMR spectroscopies and NICS analysis. J Am Chem Soc 128(8):2530–2531CrossRefGoogle Scholar
  23. 23.
    Liu Y, Ai K, Liu J et al (2013) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25(9):1353–1359CrossRefGoogle Scholar
  24. 24.
    Roper DK, Ahn W, Hoepfner M (2007) Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J Phys Chem C 111(9):3636–3641CrossRefGoogle Scholar
  25. 25.
    Kasha M, Rawls HR, El-Bayoumi MA (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11(3–4):371–392Google Scholar
  26. 26.
    Garcia-Yoldi I, Miller JS, Novoa JJ (2007) Structure and stability of the [TCNE]22-dimers in dichloromethane solution: a computational study. J Phys Chem A 111(32):8020–8027CrossRefGoogle Scholar
  27. 27.
    Lü JM, Rosokha SV, Kochi JK (2003) Stable (long-bonded) dimers via the quantitative self-association of different cationic, anionic, and uncharged π-radicals: structures, energetics, and optical transitions. J Am Chem Soc 125(40):12161–12171CrossRefGoogle Scholar
  28. 28.
    Grampp G, Landgraf S, Rasmussen K et al (2002) Dimerization of organic free radicals in solution.: 1. Temperature dependent measurements. Spectrochim Acta A 58(6):1219–1226CrossRefGoogle Scholar
  29. 29.
    Yoneda K, Nakano M, Fukuda K et al (2014) Third-order nonlinear optical properties of one-dimensional open-shell molecular aggregates composed of phenalenyl radicals. Chem-Eur J 20(35):11129–11136CrossRefGoogle Scholar
  30. 30.
    Hu X, Lu F, Chen L et al (2017) Perylene diimide-grafted polymeric nanoparticles chelated with Gd3+ for photoacoustic/T 1-weighted magnetic resonance imaging-guided photothermal therapy. ACS Appl Mater Interface 9(36):30458–30469CrossRefGoogle Scholar
  31. 31.
    Sun P, Yuan P, Wang G et al (2017) High density glycopolymers functionalized perylene diimide nanoparticles for tumor-targeted photoacoustic imaging and enhanced photothermal therapy. Biomacromol 18(10):3375–3386CrossRefGoogle Scholar
  32. 32.
    Wang Q, Zhang P, Xu J et al (2018) NIR-absorbing dye functionalized supramolecular vesicles for chemo-photothermal synergistic therapy. ACS Appl Bio Mater.  https://doi.org/10.1021/acsabm.8b00014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoPeople’s Republic of China
  2. 2.Analysis and Test CenterHebei Normal University of Science and TechnologyQinhuangdaoPeople’s Republic of China
  3. 3.Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and DevicesSouth China of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations