Advertisement

Journal of Materials Science

, Volume 53, Issue 23, pp 15995–16000 | Cite as

Tailoring the electronic structure of Mn-doped SnTe via strain

  • Xu Zhao
  • Xiaonan Zhang
  • Tianxing Wang
  • Congxin Xia
  • Shuyi Wei
Electronic materials
  • 482 Downloads

Abstract

Based on first-principles calculations, the electronic structures of Mn-doped SnTe via strain are investigated including spin–orbit coupling. Numerous results show that pristine SnTe exhibits narrow-gap semiconductor properties without magnetism, while Mn-doped SnTe system exhibits magnetic ground states dominated by 4d orbit of Mn atom with the doping concentration of 3.125% within the compression strain range (− 6% to 0). Interestingly, at the turning points of \( \varepsilon = \) −1% and −2%, a n-p-n-type transition can be observed. In addition, for the cases of \( \varepsilon = \) −1% and −2%, resonant states are introduced to the systems, which are beneficial to improving Seebeck coefficient in tailoring the thermoelectric properties. These results would provide a viable source on low-energy spintronic devices and pave the way to design n-type carriers adopted widely in thermoelectric materials.

Notes

Acknowledgement

This work is supported by a Grant from the National Natural Science Foundation of China (NSFC) under the Grant No. 11504092, 111 Project (No. D17007), and Training plan of youth backbone teacher of institution of higher learning of Henan province, and High Performance Computing Center of Henan Normal University.

References

  1. 1.
    Moore JE (2010) The birth of topological insulators. Nature 464:194–198CrossRefGoogle Scholar
  2. 2.
    Cha JJ, Williams JR, Kong D, Meister S, Peng H, Bestwic AJ, Gallagher P, Goldhaber-Gordon D, Cui Y (2010) Magnetic Doping and Kondo Effect in Bi2Se3 Nanoribbons. Nano Lett 10:1076–1081CrossRefGoogle Scholar
  3. 3.
    Fu L (2011) Topological crystalline insulators. Phys Rev Lett 106:106802CrossRefGoogle Scholar
  4. 4.
    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp LW, Zhang S-C (2007) Quantum spin Hall insulator state in HgTe quantum wells. Science 318:766–770CrossRefGoogle Scholar
  5. 5.
    Hsieh D, Qian D, Wray L, Xia Y, Hor YS, Cava RJ, Hasan MZ (2008) A topological Dirac insulator in a quantum spin Hall phase. Nature 452:970–974CrossRefGoogle Scholar
  6. 6.
    Yu R, Zhang W, Zhang H-J, Zhang SC, Dai X, Fang Z (2010) Quantized anomalous Hall effect in magnetic topological insulators. Science 329:61–64CrossRefGoogle Scholar
  7. 7.
    Zhang H, Liu CX, Qi XL, Dai X, Fang Z, Zhang SC (2009) Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 5:438CrossRefGoogle Scholar
  8. 8.
    Liu JW, Duan WH, Fu L (2013) Two types of surface states in topological crystalline insulators. Phys Rev B 88:241303–241307CrossRefGoogle Scholar
  9. 9.
    Ando Y, Fu L (2015) Topological crystalline insulators and topological superconductors: from concepts to materials. Annu Rev Condens Matter Phys 6:361–381CrossRefGoogle Scholar
  10. 10.
    Hsieh TH, Lin H, Liu J, Duan W, Bansil A, Fu L (2012) Topological crystalline insulators in the SnTe material class. Nat Commun 3:982–987CrossRefGoogle Scholar
  11. 11.
    Liu J, Qian X, Fu L (2015) Crystal field effect induced topological crystalline insulators in monolayer IV–VI semiconductors. Nano Lett 15:2657–2661CrossRefGoogle Scholar
  12. 12.
    Kovalenko MV, Heiss W, Shevchenko EV, Lee JS, Schwinghammer H, Alivisatos AP, Talapin DV (2007) SnTe nanocrystals: a new example of narrow-gap semiconductor quantum dots. J Am Chem Soc 129:11354–11355CrossRefGoogle Scholar
  13. 13.
    Tanaka Y, Sato T, Nakayama K, Souma S, Takahashi T, Ren Z, Novak M, Segawa K, Ando Y (2013) Tunability of the k-space location of the Dirac cones in the topological crystalline insulator Pb1−xSnxTe. Phys Rev B 87:155105–155109CrossRefGoogle Scholar
  14. 14.
    Okada Y, Serbyn M, Lin H, Walkup D, Zhou W, Dhital C, Chou F (2013) Observation of Dirac node formation and mass acquisition in a topological crystalline insulator. Science 341:1496–1499CrossRefGoogle Scholar
  15. 15.
    Dziawa P, Kowalski BJ, Dybko K, Buczko R, Szot M, Łusakowska E, Balasubramanian T, Wojek BM, Berntsen MH, Tjernberg O, Story T (2012) Topological crystalline insulator states in Pb1−xSnxSe. Nat Mater 11:1023–1028CrossRefGoogle Scholar
  16. 16.
    Zemel JN, Jensen JD, Schoolar RB (1965) Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe, and SnTe. Phys Rev 140:A330–A342CrossRefGoogle Scholar
  17. 17.
    Tan GJ, Shi FY, Hao SQ, Chi H, Zhao LD, Uher C (2015) Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J Am Chem Soc 137:5100–5112CrossRefGoogle Scholar
  18. 18.
    Appel O, Zilber T, Kalabukhov S, Beeri O, Gelbstein Y (2015) Morphological effects on the thermoelectric properties of Ti0.3Zr0.35Hf0.35Ni1+δSn alloys following phase separation. J Mater Chem C 3:11653–11659CrossRefGoogle Scholar
  19. 19.
    Appel O, Schwall M, Mogilyansky D, Köhne M, Balke B, Gelbstein Y (2013) Effects of microstructural evolution on the thermoelectric properties of spark-plasma-sintered Ti0.3Zr0.35Hf0.35NiSn half-Heusler compound. J Electron Mater 42:1340–1345CrossRefGoogle Scholar
  20. 20.
    Dado B, Gelbstein Y, Mogilansky D, Ezersky V, Dariel MP (2010) Structural evolution following spinodal decomposition of the pseudoternary compound (Pb0.3Sn0.1Ge0.6) Te. J Electron Mater 39:2165–2171CrossRefGoogle Scholar
  21. 21.
    Gelbstein Y, Dashevsky Z, Dariel MP (2007) Highly efficient bismuth telluride doped p-type Pb0.13Ge0.87Te for thermoelectric applications. Phys Stat Sol (RRL) 1:232–234CrossRefGoogle Scholar
  22. 22.
    Qian XF, Fu L, Li J (2015) Topological crystalline insulator nanomembrane with strain-tunable band gap. Nano Res 8:967–979CrossRefGoogle Scholar
  23. 23.
    Erickson AS, Chu JH, Toney MF, Geballe TH, Fisher IR (2009) Enhanced superconducting pairing interaction in indium-doped tin telluride. Phys Rev B 79:024520–024526CrossRefGoogle Scholar
  24. 24.
    Mitrofanov KV, Kolobov AV, Fons P, Krbal M, Tominaga J, Uruga T (2014) Study of band inversion in the Pb1−xSnxTe class of topological crystalline insulators using x-ray absorption spectroscopy. J Phys Condens Matter 26:475502–475505CrossRefGoogle Scholar
  25. 25.
    Tang E, Fu L (2014) Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators. Nat Phys 10:964–970CrossRefGoogle Scholar
  26. 26.
    Allgaier RS, Scanlon WW (1958) Mobility of electrons and holes in PbS, PbSe, and PbTe between room temperature and 4.2 K. Phys Rev 111:1029–1037CrossRefGoogle Scholar
  27. 27.
    Engelmann J, Grinenko V, Chekhonin P, Skrotzki W, Efremov DV, Oswald S, Kurth F (2013) Strain induced superconductivity in the parent compound BaFe2As2. Nat Commun 4:2877–2883CrossRefGoogle Scholar
  28. 28.
    Singh DJ (2010) Doping-dependent thermopower of PbTe from Boltzmann transport calculations. Phys Rev B 81:195217–195222CrossRefGoogle Scholar
  29. 29.
    Littlewood PB, Mihaila B, Schulze RK, Safarik DJ, Gubernatis JE, Bostwick A, Lashley JC (2010) Band structure of SnTe studied by photoemission spectroscopy. Phys Rev Lett 105:086404–086408CrossRefGoogle Scholar
  30. 30.
    Xu L, Wang HQ, Zheng JC (2011) Thermoelectric properties of PbTe, SnTe, and GeTe at high pressure: an ab initio study. J Electron Mater 40:641–647CrossRefGoogle Scholar
  31. 31.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  33. 33.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  34. 34.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  35. 35.
    West D, Sun YY, Wang H, Bang J, Zhang SB (2012) Native defects in second-generation topological insulators: effect of spin-orbit interaction on Bi2Se3. Phys Rev B 86:121201–121204CrossRefGoogle Scholar
  36. 36.
    Xu SY, Liu C, Alidoust N, Neupane M, Qian D, Belopolski I, Landolt G (2012) Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat Commun 3:1192–1200CrossRefGoogle Scholar
  37. 37.
    Tan XJ, Shao HZ, He J, Liu GQ, Xu JT, Jiang J, Jiang HC (2016) Band engineering and improved thermoelectric performance in M-doped SnTe (M = Mg, Mn, Cd, and Hg). Phys Chem Chem Phys 18:7141–7147CrossRefGoogle Scholar
  38. 38.
    Wang N, West D, Liu JW, Li J, Yan Q, Gu BL, Zhang SB, Duan WH (2014) Microscopic origin of the p-type conductivity of the topological crystalline insulator SnTe and the effect of Pb alloying. Phys Rev B 89:045142–045147CrossRefGoogle Scholar
  39. 39.
    Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Snyder GJ (2008) Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321:554–557CrossRefGoogle Scholar
  40. 40.
    Dimmock JO, Melngailis I, Strauss AJ (1966) Band structure and laser action in PbxSn1−xTe. Phys Rev Lett 16:1193–1196CrossRefGoogle Scholar
  41. 41.
    Banik A, Shenoy US, Anand S, Waghmare UV, Biswas K (2015) Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem Mater 27:581–587CrossRefGoogle Scholar
  42. 42.
    Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Ren Z (2013) High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci U S A 110:13261–13266CrossRefGoogle Scholar
  43. 43.
    Pei Y, Wang H, Snyder GJ (2012) Band engineering of thermoelectric materials. Adv Mater 24:6125–6135CrossRefGoogle Scholar
  44. 44.
    Tan GJ, Shi FY, Doak JW, Sun H, Zhao LD, Wang PL, Kanatzidis MG (2015) Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ Sci 8:267–277CrossRefGoogle Scholar
  45. 45.
    Drüppel M, Krüger P, Rohlfing M (2014) Strain tuning of Dirac states at the SnTe (001) surface. Phys Rev B 90:155312–155319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xu Zhao
    • 1
  • Xiaonan Zhang
    • 1
  • Tianxing Wang
    • 1
  • Congxin Xia
    • 1
  • Shuyi Wei
    • 1
  1. 1.College of Physics and Materials ScienceHenan Normal UniversityXinxiangChina

Personalised recommendations