Advertisement

Journal of Materials Science

, Volume 53, Issue 21, pp 15237–15245 | Cite as

Structural and electrical properties of Ge-doped ZrO2 thin films grown by atomic layer deposition for high-k dielectrics

  • Bo-Eun Park
  • Yujin Lee
  • Il-Kwon Oh
  • Wontae Noh
  • Satoko Gatineau
  • Hyungjun Kim
Electronic materials

Abstract

Enhancing the dielectric constant (k) of conventional gate dielectric materials such as HfO2 and ZrO2 is one of the important requirements for further scaling down of devices in future years. One promising approach for achieving this is to incorporate a specific element in the high-k host material for stabilizing a particular higher-k crystalline phase. Although Ge has been theoretically suggested as a stabilizer for ZrO2, there are no experimental studies correlating the structure of ZrO2 films fabricated by atomic layer deposition (ALD) with their electrical properties. In this work, we systematically investigated the structural and electrical properties of Ge-doped ZrO2 films prepared by ALD. We used germanium butoxide (Ge(OnBu)4) and Zr tris(dimethylamino)cyclopentadienyl zirconium as the Ge and Zr precursors, respectively, with O3 as a reactant. We controlled the ALD cycle ratio using a supercycle process (GeO2/ZrO2 = 1:128, 1:64, 1:32, 1:16, 1:8, 1:4, and 1:2) to produce the alloy films. Electrical properties of these samples were evaluated by measuring the electrical characteristics of metal-oxide-semiconductor (MOS) capacitors based on them, and the results are discussed together with crystallographic analysis. The results revealed that Ge incorporation into ZrO2 induced the stabilization of the cubic/tetragonal phase of the ZrO2 film at low temperatures and improved its dielectric properties. Consequently, this is a systematic and facile method to optimize the dielectric properties of Ge-doped ZrO2 prepared by varying the ALD cycle ratio, and these films could be applied in future nanoscale devices.

Notes

Acknowledgements

This work was partly supported by the Materials and Components Technology Development Program of MOTIE/KEIT [10080642, Development on precursors for carbon/halogen-free thin film and their delivery system for high-k/metal gate application] and (in part) by the Yonsei University Research Fund (Post Doc. Researcher Supporting Program) of 2017 (Project No.: 2017-12-018). This work was also supported by Air Liquide as a precursor supplier.

Authors’ contribution

The manuscript was written through contributions of all authors. All authors have given approval of the final version of the manuscript.

Supplementary material

10853_2018_2695_MOESM1_ESM.docx (498 kb)
Supplementary material 1 (DOCX 497 kb)

References

  1. 1.
    Botzakaki MA, Xanthopoulos N, Makarona E, Tsamis C, Kennou S, Ladas S, Georga SN, Krontiras CA (2013) Microelectronic Engineering ALD deposited ZrO2 ultrathin layers on Si and Ge substrates : a multiple technique characterization. Microelectron Eng 112:208–212CrossRefGoogle Scholar
  2. 2.
    Robertson J (2008) Maximizing performance for higher K gate dielectrics. J Appl Phys 104(12):1–7CrossRefGoogle Scholar
  3. 3.
    Wallace RM, Wilk GD (2003) High-κ dielectric materials for microelectronics. Crit Rev Solid State Mater Sci 28(4):231–285CrossRefGoogle Scholar
  4. 4.
    Zhao X, Vanderbilt D (2002) First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys Rev B 65(23):75105CrossRefGoogle Scholar
  5. 5.
    Park B-E, Oh I-K, Mahata C, Lee CW, Thompson D, Lee HBR, Maeng WJ, Kim H (2017) Atomic layer deposition of Y-stabilized ZrO2 for advanced DRAM capacitors. J Alloys Compd 722:307–312CrossRefGoogle Scholar
  6. 6.
    Goff J, Hayes W, Hull S, Hutchings M, Clausen K (1999) Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys Rev B 59(22):14202–14219CrossRefGoogle Scholar
  7. 7.
    Sasaki K, Hasu T, Sasaki K, Hata T (2002) Limited reaction growth of YSZ (ZrO2: Y2O3) thin films for gate insulator. Vacuum 66:403–408CrossRefGoogle Scholar
  8. 8.
    Zhao CZ, Taylor S, Werner M, Chalker PR, Murray RT, Gaskell JM, Jones AC (2009) Dielectric relaxation of lanthanum doped zirconium oxide. J Appl Phys 105(4):44102CrossRefGoogle Scholar
  9. 9.
    Jõgi I, Kukli K, Ritala M, Leskelä M, Aarik J, Aidla A, Lu J (2010) Atomic layer deposition of high capacitance density Ta2O5–ZrO2 based dielectrics for metal-insulator-metal structures. Microelectron Eng 87:144–149CrossRefGoogle Scholar
  10. 10.
    Li P, Chen I-W, Penner-Hahn JE (1994) Effect of dopants on zirconia stabilization—an X-ray absorption study: I, Trivalent Dopants. J Am Ceram Soc 77(5):1289–1295CrossRefGoogle Scholar
  11. 11.
    Lee MS, An C-H, Lim JH, Joo J-H, Lee H-J, Kim H (2010) Characteristics of Ce-doped ZrO2 dielectric films prepared by a solution deposition process. J Electrochem Soc 157(6):G142–G146CrossRefGoogle Scholar
  12. 12.
    Tomida K, Kita K, Toriumi A, Tomida K, Kita K, Toriumi A (2016) Dielectric constant enhancement due to Si incorporation into HfO2. Appl Phys Lett 89:142902CrossRefGoogle Scholar
  13. 13.
    Fischer D, Kersch A (2008) The effect of dopants on the dielectric constant of HfO[sub 2] and ZrO[sub 2] from first principles. Appl Phys Lett 92:12908CrossRefGoogle Scholar
  14. 14.
    Tsoutsou D, Apostolopoulos G, Galata SF, Tsipas P, Sotiropoulos A, Mavrou G, Panayiotatos Y, Lagoyannis A, Karydas AG, Kantarelou V, Harissopoulos S, Tsoutsou D, Apostolopoulos G, Galata SF, Tsipas P, Sotiropoulos A (2009) Stabilization of very high- k tetragonal phase in Ge-doped ZrO2 films grown by atomic oxygen beam deposition Stabilization of very high- k tetragonal phase in Ge-doped ZrO2 films grown by atomic oxygen beam deposition. J Appl Phys 106:24107CrossRefGoogle Scholar
  15. 15.
    Tsoutsou D, Apostolopoulos G, Galata S, Tsipas P, Sotiropoulos A, Mavrou G, Panayiotatos Y (2009) Microelectronic Engineering Stabilization of a very high- k tetragonal ZrO2 phase by direct doping with germanium. Microelectron Eng 86:1626–1628CrossRefGoogle Scholar
  16. 16.
    Kim H, Lee HBR, Maeng WJ (2009) Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517(8):2563–2580CrossRefGoogle Scholar
  17. 17.
    Zang Z, Nakamura A, Temmyo J (2013) Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Opt Express 21(9):11448–11456CrossRefGoogle Scholar
  18. 18.
    Izaki M, Shinagawa T, Mizuno KT, Ida Y, Inaba M, Tasaka A (2007) Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. J Phys D Appl Phys 40(11):3326–3329CrossRefGoogle Scholar
  19. 19.
    Oh I-K, Kim K, Lee Z, Song J-G, Lee CW, Thompson D, Lee H-B-R, Kim W-H, Maeng WJ, Kim H (2015) In situ surface cleaning on a Ge substrate using TMA and MgCp2 for HfO2 -based gate oxides. J Mater Chem C 3(19):4852–4858CrossRefGoogle Scholar
  20. 20.
    Zhitomirsky VN, Kim SK, Burstein L, Boxman RL (2010) X-ray photoelectron spectroscopy of nano-multilayered Zr-O/Al-O coatings deposited by cathodic vacuum arc plasma. Appl Surf Sci 256(21):6246–6253CrossRefGoogle Scholar
  21. 21.
    Mi Y, Wang J, Yang Z, Wang Z, Wang H, Yang S (2014) A simple one-step solution deposition process for constructing high-performance amorphous zirconium oxide thin film. RSC Adv 4(12):6060–6067CrossRefGoogle Scholar
  22. 22.
    Kibel MH (1996) X-ray photoelectron spectroscopy study of optical waveguide glasses. Surf Interface Anal 24(9):605–610CrossRefGoogle Scholar
  23. 23.
    Natsume Y, Sakata H (2000) Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films 372:30–36CrossRefGoogle Scholar
  24. 24.
    Yousfi EB, Weinberger B, Donsanti F, Cowache P, Lincot DU (2001) Atomic layer deposition of zinc oxide and indium sulfide layers for Cu (In, Ga)Se2 thin-film solar cells. Thin Solid Films 387(1–2):29–32CrossRefGoogle Scholar
  25. 25.
    Lamperti L, Lamagna G, Congedo S Spiga (2011) Cubic/tetragonal phase stabilization in high-κ ZrO2 thin films grown using O3-based atomic layer deposition. J Electrochem Soc 158(10):G221–G226CrossRefGoogle Scholar
  26. 26.
    Utkin AV, Bulina NV, Belen IV, Baklanova NI (2012) Phase analysis of the ZrO2–GeO2 system. Inorg Chem 48(6):601–606Google Scholar
  27. 27.
    Kim D-J, Jang J-W, Jung H-J, Huh J-W, Yang I-S (1995) Determination of solid solubility limit of GeO2 in 2 mol Y203-stabilized tetragonal ZrO2 by Raman spectroscopy. J Mater Sci Lett 14(14):1007–1009CrossRefGoogle Scholar
  28. 28.
    Yoon CM, Oh I-K, Lee Y, Song J-G, Lee SJ, Myoung J-M, Kim HG, Moon H-S, Shong B, Lee H-B-R, Kim H (2018) Water-erasable memory device for security applications prepared by the atomic layer deposition of GeO2. Chem Mater 30(3):830–840CrossRefGoogle Scholar
  29. 29.
    Borilo LP, Borilo LN (2011) Physicochemical processes involved in synthesis of thin films based on double oxides of the ZrO2-GeO2 system. Russ J Inorg Chem 56(6):835–840CrossRefGoogle Scholar
  30. 30.
    Monshi A (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2(3):154–160CrossRefGoogle Scholar
  31. 31.
    Robertson J (2004) High dielectric constant oxides. Eur Phys J Appl Phys 28:265–291CrossRefGoogle Scholar
  32. 32.
    Thompson DP, Dickins AM, Thorp JS (1992) The dielectric properties of zirconia. J Mater Sci 27:2267–227110.1007/BF01117947 CrossRefGoogle Scholar
  33. 33.
    Toriumi A, Kita K, Tomida K, Yamamoto Y (2006) Doped HfO2 for higher-k dielectrics. ECS Trans 1(5):185–197CrossRefGoogle Scholar
  34. 34.
    Cheong KY, Moon JH, Kim HJ, Bahng W, Kim NK (2008) Current conduction mechanisms in atomic-layer-deposited HfO2 /nitrided SiO2 stacked gate on 4H silicon carbide. J Appl Phys 103(8):1–8CrossRefGoogle Scholar
  35. 35.
    Cox SFJ, Gavartin JL, Lord JS, Cottrell SP, Gil JM, Alberto HV, Piroto Duarte J, Vilão RC, Ayres De Campos N, Keeble DJ, Davis EA, Charlton M, Van Der Werf DP (2006) Oxide muonics: II. Modelling the electrical activity of hydrogen in wide-gap and high-permittivity dielectrics. J Phys: Condens Matter 18(3):1079–1119Google Scholar
  36. 36.
    Yu SM, Guan XM, Wong HSP (2011) Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model. Appl Phys Lett 99(6):63507CrossRefGoogle Scholar
  37. 37.
    Kim H, Yang S, Park K (2013) Leakage current analysis depends on grain size variation in zinc oxide thin film transistor. 224th ECS Meeting. https://ecs.confex.com/ecs/224/webprogram/Abstract/Paper23102/A1-0076.pdf
  38. 38.
    McKenna K, Shluger A, Iglesias V, Porti M, Nafría M, Lanza M, Bersuker G (2011) Grain boundary mediated leakage current in polycrystalline HfO2 films. Microelectron Eng 88(7):1272–1275CrossRefGoogle Scholar
  39. 39.
    Park BE, Oh IK, Lee CW, Lee G, Shin YH, Lansalot-Matras C, Noh W, Kim H, Lee HBR (2016) Effects of Cl-based ligand structures on atomic layer deposited HfO2. J Phys Chem C 120(11):5958–5967CrossRefGoogle Scholar
  40. 40.
    Bersuker G, Yum J, Vandelli L, Padovani A, Larcher L, Iglesias V, Porti M, Nafría M, McKenna K, Shluger A, Kirsch P, Jammy R (2011) Grain boundary-driven leakage path formation in HfO2 dielectrics. Solid State Electron 65–66(1):146–150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringYonsei UniversitySeoulKorea
  2. 2.Air Liquide Korea Co, Yonsei UniversitySeoulKorea

Personalised recommendations