Journal of Materials Science

, Volume 53, Issue 21, pp 15226–15236 | Cite as

HAADF-STEM for the analysis of core–shell quantum dots

  • N. Fernández-DelgadoEmail author
  • M. Herrera
  • J. Pizarro
  • P. Galindo
  • S. I. Molina
Electronic materials


The capability of the imaging technique of high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to detect the interface in small core/shell quantum dots (QDs) is investigated. In particular, two methodologies based on HAADF-STEM-simulated images are evaluated. The first methodology relies on quantifying the HAADF-STEM intensity variations in the particle to be correlated with the atomic number (Z) changes through the interface core–shell. The second approach consists of the measurement of the strain field of these QDs based on the analysis of the core–shell lattice mismatch. The applicability of both methodologies for core–shell particles of different sell thicknesses and core compositions is discussed. The work has showed that both methodologies are expected to provide successful results as far as the quality of the experimental images is good enough. In addition, both procedures have been applied to an experimental image of CdSe/ZnS colloidal core/shell QD with a nominal value of shell thickness of 0.6 nm, demonstrating the successful detection of the ZnS shell.



This work was supported by the Spanish MINECO (Projects TEC2014-53727-C2-1-R, -2-R and TEC2017-86102-C2-2-R) and Junta de Andalucía (PAI Research Group TEP-946). The research leading to these results has received co-funding from the European Union. The sample in which the methodology developed was applied was obtained from P.J. Rodriguez-Cantó (INTENANOMAT S.L., Paterna, Spain), R. Abargues and J.P. Martínez-Pastor (both from Institute of Material Science, University of Valencia, Spain).

Compliance with ethical standards


  1. 1.
    Litvin AP, Martynenko IV, Purcell-Milton F et al (2017) Colloidal quantum dots for optoelectronics. J Mater Chem A 5:13252–13275CrossRefGoogle Scholar
  2. 2.
    Baskoutas S (2006) Size-dependent band gap of colloidal quantum dots. J Appl Phys 99:13708CrossRefGoogle Scholar
  3. 3.
    Byun HJ, Song WS, Yang H (2011) Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source. Nanotechnology 22:235605–235606CrossRefGoogle Scholar
  4. 4.
    Meinardi F, Colombo A, Velizhanin KA et al (2014) Large-area luminescent solar concentrators based on Stokes-shift-engineered nanocrystals in a mass-polymerized PMMA matrix. Nat Photonics 8:392–399CrossRefGoogle Scholar
  5. 5.
    Vinayakan R, Shanmugapriya T, Nair PV et al (2007) An approach for optimizing the shell thickness of core–shell quantum dots using photoinduced charge transfer. J Phys Chem C 111:10146–10149CrossRefGoogle Scholar
  6. 6.
    Yu Z, Quo L, Du H et al (2005) Shell distribution on colloidal CdSe/ZnS quantum dots. Nano Lett 5:565–570CrossRefGoogle Scholar
  7. 7.
    Kisielowski C, Freitag B, Bischoff M et al (2008) Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14:469–477CrossRefGoogle Scholar
  8. 8.
    Kauko H, Zheng CL, Zhu Y et al (2013) Compositional analysis of GaAs/AlGaAs heterostructures using quantitative scanning transmission electron microscopy. Appl Phys Lett 103:232111–232114CrossRefGoogle Scholar
  9. 9.
    Van Aert S, Batenburg KJ, Rossell MD et al (2011) Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470:374–377CrossRefGoogle Scholar
  10. 10.
    Casavola M, Van Huis MA, Bals S et al (2012) Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry. Chem Mater 24:294–302CrossRefGoogle Scholar
  11. 11.
    Deepak FL, Casillas-Garcia G, Esparza R et al (2011) New insights into the structure of PdAu nanoparticles as revealed by aberration-corrected STEM. J Cryst Growth 325:60–67CrossRefGoogle Scholar
  12. 12.
    Pizarro J, Galindo PL, Guerrero E et al (2008) Simulation of high angle annular dark field scanning transmission electron microscopy images of large nanostructures. Appl Phys Lett 93:2006–2009CrossRefGoogle Scholar
  13. 13.
    Galindo PL, Kret S, Sanchez AM et al (2007) The peak pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107:1186–1193CrossRefGoogle Scholar
  14. 14.
    Kunstman P, Coulon J, Kolmykov O et al (2018) One step synthesis of bright luminescent core/shell CdTexS1−x/ZnS quantum dots emitting from the visible to the near infrared. J Lumin 194:760–767CrossRefGoogle Scholar
  15. 15.
    Rezaei B, Shahshahanipour M, Ensafi AA, Farrokhpour H (2017) Development of highly selective and sensitive fluorimetric label-free mercury aptasensor based on cysteamine@CdTe/ZnS quantum dots, experimental and theoretical investigation. Sens Actuators B Chem 247:400–407CrossRefGoogle Scholar
  16. 16.
    Ramasamy P, Kim N, Kang YS et al (2017) Tunable, bright, and narrow-band luminescence from colloidal indium phosphide quantum dots. Chem Mater 29:6893–6899CrossRefGoogle Scholar
  17. 17.
    Mordvinova N, Vinokurov A, Kuznetsova T et al (2017) Highly luminescent core–shell InP/ZnX (X = S, Se) quantum dots prepared via a phosphine synthetic route. Dalt Trans 46:1297–1303CrossRefGoogle Scholar
  18. 18.
    Rosenthal SJ, McBride J, Pennycook SJ, Feldman LC (2007) Synthesis, surface studies, composition and structural characterization of CdSe, core/shell and biologically active nanocrystals. Surf Sci Rep 62:111–157CrossRefGoogle Scholar
  19. 19.
    Cho Y, Park JS, Yang J-M et al (2015) Quantitative compositional analysis of InxGa1−xN/GaN multiquantum wells in light-emitting diodes. J Mater Res 30:2893–2899CrossRefGoogle Scholar
  20. 20.
    Grieb T, Müller K, Fritz R et al (2013) Quantitative chemical evaluation of dilute GaNAs using ADF STEM: avoiding surface strain induced artifacts. Ultramicroscopy 129:1–9CrossRefGoogle Scholar
  21. 21.
    Zuo JM, Kim M, O’Keeffe M et al (2014) Identifying and correcting scan noise and drift in the scanning transmission electron microscope. Phys Rev B Condens Matter Mater Phys 89:12248–12265Google Scholar
  22. 22.
    Van Schooneveld MM, Gloter A, Stephan O et al (2010) Imaging and quantifying the morphology of an organic-inorganic nanoparticle at the sub-nanometre level. Nat Nanotechnol 5:538–544CrossRefGoogle Scholar
  23. 23.
    Zhang Z, Long Y, Cazottes S et al (2015) The peculiarity of the metal-ceramic interface. Sci Rep 5:11460CrossRefGoogle Scholar
  24. 24.
    Wu M, Trampert A, Al-Zoubi T et al (2015) Interface structure and strain state of InAs nano-clusters embedded in silicon. Acta Mater 90:133–139CrossRefGoogle Scholar
  25. 25.
    Li C, Wang L, Wang Z et al (2016) Atomic resolution interfacial structure of lead-free ferroelectric K0.5Na0.5NbO3 thin films deposited on SrTiO3. Sci Rep 6:37788CrossRefGoogle Scholar
  26. 26.
    Tang YL, Zhu YL, Ma XL (2016) On the benefit of aberration-corrected HAADF-STEM for strain determination and its application to tailoring ferroelectric domain patterns. Ultramicroscopy 160:57–63CrossRefGoogle Scholar
  27. 27.
    Mahalingam K, Haugan HJ, Brown GJ, Eyink KG (2013) Quantitative analysis of interfacial strain in InAs/GaSb superlattices by aberration-corrected HRTEM and HAADF-STEM. Ultramicroscopy 127:70–75CrossRefGoogle Scholar
  28. 28.
    Li J, Zhao C, Xing Y et al (2013) Full-field strain mapping at a Ge/Si heterostructure interface. Materials (Basel) 6:2130–2142CrossRefGoogle Scholar
  29. 29.
    Kim H, Meng Y, Kwon JH et al (2018) Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain. IUCrJ 5:67–72CrossRefGoogle Scholar
  30. 30.
    Monteforte M, Kobayashi S, Tung LD et al (2016) Quantitative two-dimensional strain mapping of small core–shell FePt@Fe3O4 nanoparticles. New J Phys 18:033016CrossRefGoogle Scholar
  31. 31.
    Reiss P, Protière M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5:154–168CrossRefGoogle Scholar
  32. 32.
    Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860CrossRefGoogle Scholar
  33. 33.
    Gong K, Kelley DF (2014) A predictive model of shell morphology in CdSe/CdS core/shell quantum dots. J Chem Phys 141:194704CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, IMEYMAT, Faculty of ScienceUniversity of CadizPuerto RealSpain
  2. 2.Department of Computer Engineering, School of EngineeringUniversity of CadizPuerto RealSpain

Personalised recommendations