Journal of Materials Science

, Volume 53, Issue 21, pp 15257–15270 | Cite as

Effect of HCl etching on TiO2 nanorod-based perovskite solar cells

  • QingWen Yue
  • Jinxia DuanEmail author
  • Linlu Zhu
  • Kai Zhang
  • Jun Zhang
  • Hao WangEmail author
Energy materials


TiO2 nanorods (NRs) show unique electron extraction capability for perovskite solar cells (PVSCs). In this work, we gradually optimized TiO2 compact layers and vertical NRs to improve PVSC performances. TiO2 compact layers (i.e., barrier layers) from 2-h TiCl4 hydrolysis could cover the entire surface of FTO substrate, and their photovoltaic cells showed a higher PCE of 13.61% than counterparts for other hydrolysis time. Subsequently, the microstructures of TiO2 NRs were also controlled by the hydrothermal time, favoring the infiltration and crystallization of photoactive CH3NH3PbI3. And perovskite photovoltaics achieved the average efficiency of 16.01 ± 0.80% with ~250-nm-long TiO2 NRs. Finally, the surface feature of TiO2 NRs and its effect to photovoltaic properties were investigated by HCl etching technology. Through careful manipulation of HCl etching process, the charge recombination and current hysteresis were substantially suppressed and the PCE of the TiO2 NRs-based PVSC was raised to 17.57% (16.63 ± 0.94%), which was ~1.05 times to control devices. Meanwhile, we have fabricated the PVSC based on etched TiO2 NRs at low-temperature (150 °C) annealing with similar efficiency ~17.41% (16.60 ± 0.81%), which is good for flexible device fabrication.



This work is supported by the National Natural Science Foundation of China (Nos. 11204070, 51372075 and 11374090).

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

10853_2018_2685_MOESM1_ESM.tif (7 mb)
Supplementary material 1 (TIFF 7187 kb)
10853_2018_2685_MOESM2_ESM.tif (2.7 mb)
Supplementary material 2 (TIFF 2724 kb)
10853_2018_2685_MOESM3_ESM.tif (6.4 mb)
Supplementary material 3 (TIFF 6564 kb)
10853_2018_2685_MOESM4_ESM.tif (4.7 mb)
Supplementary material 4 (TIFF 4775 kb)
10853_2018_2685_MOESM5_ESM.tif (7.7 mb)
Supplementary material 5 (TIFF 7875 kb)
10853_2018_2685_MOESM6_ESM.docx (14 kb)
Supplementary material 6 (DOCX 13 kb)


  1. 1.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRefGoogle Scholar
  2. 2.
    Huang J, Yuan Y, Shao Y, Yan Y (2017) Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat Rev Mater 2:17042CrossRefGoogle Scholar
  3. 3.
    Shin SS, Yeom EJ, Yang WS et al (2017) Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356:167–171CrossRefGoogle Scholar
  4. 4.
    Green MA, Ho-Baillie A (2017) Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett 2:822–830CrossRefGoogle Scholar
  5. 5.
    Hou Y, Du X, Scheiner S et al (2017) A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358:1192–1197CrossRefGoogle Scholar
  6. 6.
    Yang WS, Park BW, Jung EH et al (2017) Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356:1376–1379CrossRefGoogle Scholar
  7. 7.
    Ravishankar S, Gharibzadeh S, Roldán-Carmona C et al (2018) Influence of charge transport layers on open-circuit voltage and hysteresis in perovskite solar cells. Joule 2:1–11CrossRefGoogle Scholar
  8. 8.
    Duan J, Wu J, Zhang J, Xu Y, Wang H, Gao D, Lund PD (2016) TiO2/ZnO/TiO2 sandwich multi-layer films as a hole-blocking layer for efficient perovskite solar cells. Int J Energy Res 40:806–813CrossRefGoogle Scholar
  9. 9.
    Yang G, Lei H, Tao H et al (2017) Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers. Small 13:1601769CrossRefGoogle Scholar
  10. 10.
    Saliba M, Matsui T, Domanski K et al (2016) Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354:206–209CrossRefGoogle Scholar
  11. 11.
    Arora N, Dar MI, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin SM, Grätzel M (2017) Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358:768–771CrossRefGoogle Scholar
  12. 12.
    Qiu Q, Li S, Jiang J, Wang D, Lin Y, Xie T (2017) Improved electron transfer between TiO2 and FTO interface by N-Doped anatase TiO2 nanowires and its applications in quantum dot-sensitized solar cells. J Phys Chem C 121:21560–21570CrossRefGoogle Scholar
  13. 13.
    Lin SH, Su YH, Cho HW, Kung PY, Liao WP, Wu JJ (2016) Nanophotonic perovskite solar cell architecture with a three-dimensional TiO2 nanodendrite scaffold for light trapping and electron collection. J Mater Chem A 4:1119–1125CrossRefGoogle Scholar
  14. 14.
    Qin P, Paulose M, Dar MI et al (2015) Stable and efficient perovskite solar cells based on titania nanotube arrays. Small 11:5533–5539CrossRefGoogle Scholar
  15. 15.
    Jiang Q, Sheng X, Li Y, Feng X, Xu T (2014) Rutile TiO2 nanowire-based perovskite solar cells. Chem Commun 50:14720–14723CrossRefGoogle Scholar
  16. 16.
    Kim HS, Lee JW, Yantara N, Boix PP, Kulkarni SA, Mhaisalkar S, Grätzel M, Park NG (2013) High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 13:2412–2417CrossRefGoogle Scholar
  17. 17.
    Li JF, Zhang ZL, Gao HP, Zhang Y, Mao YL (2015) Effect of solvents on the growth of TiO2 nanorods and their perovskite solar cells. J Mater Chem A 3:19476–19482CrossRefGoogle Scholar
  18. 18.
    Li X, Dai S, Zhu P, Deng L, Xie S, Cui Q, Chen H, Wang N, Lin H (2016) Efficient perovskite solar cells depending on TiO2 nanorod arrays. ACS Appl Mater Interfaces 8:21358–21365CrossRefGoogle Scholar
  19. 19.
    Liu C, Zhu R, Ng A et al (2017) Investigation of high performance TiO2 nanorod array perovskite solar cells. J Mater Chem A 5:15970–15980CrossRefGoogle Scholar
  20. 20.
    Salado M, Oliva-Ramirez M, Kazim S, González-Elipe AR, Ahmad S (2017) 1-dimensional TiO2 nano-forests as photoanodes for efficient and stable perovskite solar cells fabrication. Nano Energy 35:215–222CrossRefGoogle Scholar
  21. 21.
    Mali SS, Shim CS, Park HK, Heo J, Hong CK (2015) Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells. Chem Mater 5:1541–1551CrossRefGoogle Scholar
  22. 22.
    Cui Q, Zhao X, Lin H, Yang L, Chen H, Zhang Y, Li Xin (2017) Improved efficient perovskite solar cells based on Ta-doped TiO2 nanorod arrays. Nanoscale 9:18897–18907CrossRefGoogle Scholar
  23. 23.
    Mali SS, Betty CA, Patil PS, Hong CK (2017) Synthesis of a nanostructured rutile TiO2 electron transporting layer via an etching process for efficient perovskite solar cells: impact of the structural and crystalline properties of TiO2. J Mater Chem A 5:12340–12353CrossRefGoogle Scholar
  24. 24.
    Wu WQ, Feng HL, Chen HY, Kuang DB, Su CY (2017) Recent advances in hierarchical three-dimensional titanium dioxide nanotree arrays for high-performance solar cells. J Mater Chem A 5:12699–12717CrossRefGoogle Scholar
  25. 25.
    Kwon J, Kim SJ, Park JH (2015) The tailored inner space of TiO2 electrodes via a 30 second wet etching process: high efficiency solid-state perovskite solar cells. Nanoscale 7:10745–10751CrossRefGoogle Scholar
  26. 26.
    Li Y, Lo KSK, Fong Leung W W (2017) Conditioning lead iodide with dimethylsulfoxide and hydrochloric acid to control crystal growth improving performance of perovskite solar cell. Sol Energy 157:328–334CrossRefGoogle Scholar
  27. 27.
    Yan J, Chen Y, Wang J, Zhang A, Bing Zhang (2017) Influences of organic cation and hydrochloric acid additive on the morphology and photoluminescence of HC(NH2)2PbBr 3 films. Opt Mater 73:736–741CrossRefGoogle Scholar
  28. 28.
    Wan J, Liu R, Tong Y, Chen S, Hu Y, Wang B, Xu Y, Wang H (2016) Hydrothermal etching treatment to rutile TiO2 nanorod arrays for improving the efficiency of CdS-sensitized TiO2 solar cells. Nanoscale Res Lett 11:12CrossRefGoogle Scholar
  29. 29.
    Duan J, Xiong Q, Feng B, Xu Y, Zhang J, Wang H (2017) Low-temperature processed SnO2 compact layer for efficient mesostructure perovskite solar cells. Appl Surf Sci 391:677–683CrossRefGoogle Scholar
  30. 30.
    Chen W, Luo Q, Deng X, Zheng J, Zhang C, Chen X, Huang S (2017) TiO2 nanorod arrays hydrothermally grown on MgO-coated compact TiO2 for efficient perovskite solar cells. RSC Adv 7:54068–54077CrossRefGoogle Scholar
  31. 31.
    Xu Y, Liu T, Li Z, Feng B, Li S, Duan J, Ye C, Zhang J, Wang H (2016) Preparation and photovoltaic properties of perovskite solar cell based on ZnO nanorod arrays. Appl Surf Sci 388:89–96CrossRefGoogle Scholar
  32. 32.
    Liu Z, Chen Q, Hong Z et al (2016) Low-Temperature TiOx compact layer for planar heterojunction perovskite solar cells. ACS Appl Mater Interfaces 17:11076–11083CrossRefGoogle Scholar
  33. 33.
    Liu L, Qian J, Li B et al (2010) Fabrication of rutile TiO2 tapered nanotubes with rectangular cross-sections via anisotropic corrosion route. Chem Commun 46:2402–2404CrossRefGoogle Scholar
  34. 34.
    Pan H, Qian J, Yu A, Xu M, Tu L, Chai Q, Zhou X (2011) TiO2 wedgy nanotubes array flims for photovoltaic enhancement. Appl Surf Sci 257:5059–5063CrossRefGoogle Scholar
  35. 35.
    Mohammadian N, Moshaii A, Alizadeh A, Gharibzadeh S, Mohammadpour R (2016) Influence of perovskite morphology on slow and fast charge transport and hysteresis in the perovskite solar cells. J Phys Chem Lett 7:4614–4621CrossRefGoogle Scholar
  36. 36.
    Son DY, Kim SG, Seo JY, Lee SH, Shin H, Lee D, Park NG (2018) Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J Am Chem Soc 140:1358–1364CrossRefGoogle Scholar
  37. 37.
    Chen P, Jin Z, Wang Y et al (2017) Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells. Appl Surf Sci 402:86–91CrossRefGoogle Scholar
  38. 38.
    Thakur U, Askar AM, Kisslinger R, Wiltshire BD, Kar P, Shankar K (2017) Halide perovskite solar cells using monocrystalline TiO2 nanorod arrays as electron transport layers: impact of nanorod morphology. Nanotechnology 28:274001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro and Piezoelectric Materials and Devices, Faculty of Physics and Electronic ScienceHubei UniversityWuhanPeople’s Republic of China

Personalised recommendations