Journal of Materials Science

, Volume 53, Issue 20, pp 14619–14628 | Cite as

ZnS nanoparticles coated with graphene-like nano-cell as anode materials for high rate capability lithium-ion batteries

  • Huiwei Du
  • Xuchun GuiEmail author
  • Rongliang Yang
  • Hao Zhang
  • Zhiqiang Lin
  • Binghao Liang
  • Wenjun Chen
  • Hai Zhu
  • Jun Chen
Energy materials


A core–shell structure ZnS nanocomposite was synthesized by wrapping ZnS nanoparticles up in graphene-like nano-cell (GLC@ZnS) through chemical vapor deposition. The morphological and structural characteristics exhibit that the obtained GLC@ZnS composite possesses high-quality ZnS nano-sized particles and laminated graphene-like layers shell. When applied as anode materials for lithium-ion batteries, the GLC@ZnS composite (high ZnS content of 97.2%) with diameter of 30 nm delivers high reversible capacities (1134 mAh g−1 after 100 cycles at 0.5 A g−1, 890 mAh g−1 after 200 cycles at 1.0 A g−1) and excellent rate capability (701 mAh g−1 at 8.0 A g−1). The excellent electrochemical performance of the composite is ascribed to the inclosed graphene-like nano-cell, which could localize the active materials and enhance the exchange of charges and ions.



This work was financially supported by National Natural Science Foundation of China (Grant No. 51772335), Guangdong Natural Science Foundation (Grant No. 2016A030313346), Guangdong Youth Top-notch Talent Support Program (Grant No. 2015TQ01C201).

Supplementary material

10853_2018_2674_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1516 kb)


  1. 1.
    Megahed S, Ebner W (1995) Lithium-ion battery for electronic applications. J Power Sources 54:155–162CrossRefGoogle Scholar
  2. 2.
    Erickson EM, Ghanty C, Aurbach D (2014) New horizons for conventional lithium ion battery technology. J Phys Chem Lett 5:3313–3324CrossRefGoogle Scholar
  3. 3.
    Jusef Hassoun J, Scrosati B (2015) Review—advances in anode and electrolyte materials for the progress of lithium-ion and beyond lithium-ion batteries. J Electrochem Soc 162:A2582–A2588CrossRefGoogle Scholar
  4. 4.
    Fotouhi A, Auger DJ, Propp K, Longo S, Wild M (2016) A review on electric vehicle battery modelling: from lithium-ion toward lithium–sulphur. Renew Sustain Energy Rev 56:1008–1021CrossRefGoogle Scholar
  5. 5.
    Bruen T, Marco J (2016) Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system. J Power Sources 310:91–101CrossRefGoogle Scholar
  6. 6.
    Li NW, Yin YX, Li JY, Zhang CH, Guo YG (2017) Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable li plating/stripping. Adv Sci 4:1600400CrossRefGoogle Scholar
  7. 7.
    Ye H, Xin S, Yin YX, Guo YG (2017) Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater 7:1700530CrossRefGoogle Scholar
  8. 8.
    Yuan T, Jiang Y, Sun W, Xiang B, Li Y, Yan M, Xu B, Dou S (2016) Ever-increasing pseudocapacitance in RGO–MnO–RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv Func Mater 26:2198–2206CrossRefGoogle Scholar
  9. 9.
    Liu D, Liu D, Hou B, Wang Y, Guo J, Ning Q, Wu X-L (2018) 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300CrossRefGoogle Scholar
  10. 10.
    Tomita Y, Kimura N, Nasu H, Izumi Y, Arai J, Yamane Y, Yamada K, Kohno Y, Kobayashi K (2017) Effects of Li-doped NiO on the charge–discharge properties of LiF–NiO composites used as cathode materials for Li-ion batteries. J Appl Electrochem 47:1057–1063CrossRefGoogle Scholar
  11. 11.
    Iturrondobeitia A, Goni A, Gil I, de Muro L, Lezama T Rojo (2017) Physico-chemical and electrochemical properties of nanoparticulate NiO/C composites for high performance lithium and sodium ion battery anodes. Nanomaterials 7:423CrossRefGoogle Scholar
  12. 12.
    Li L, Kovalchuk A, Fei H et al (2015) Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv Energy Mater 5:1500171CrossRefGoogle Scholar
  13. 13.
    Zhao L, Gao M, Yue W, Jiang Y, Wang Y, Ren Y, Hu F (2015) Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 7:9709–9715CrossRefGoogle Scholar
  14. 14.
    Zhang H, Wang Y, Zhao W, Zou M, Chen Y, Yang L, Xu L, Wu H, Cao A (2017) MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes. ACS Appl Mater Interfaces 9:37813–37822CrossRefGoogle Scholar
  15. 15.
    Wang Y, Deng Q, Xue W, Jian Z, Zhao R, Wang J (2018) ZnO/rGO/C composites derived from metal–organic framework as advanced anode materials for Li-ion and Na-ion batteries. J Mater Sci 53:6785–6795. CrossRefGoogle Scholar
  16. 16.
    Wang DL, Yu YC, He H, Wang J, Zhou WD, Abruna HD (2015) Template-free synthesis of hollow structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9:1775–1781CrossRefGoogle Scholar
  17. 17.
    Yan C, Chen G, Zhou X, Sun J, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Func Mater 26:1428–1436CrossRefGoogle Scholar
  18. 18.
    Zhai X, Xu X, Zhu X, Zhao Y, Li J, Jin H (2017) Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries. J Mater Sci 53:1356–1364. CrossRefGoogle Scholar
  19. 19.
    Wang J, Wu J, Wu Z, Han L, Huang T, Xin HL, Wang D (2017) High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo2O4/CNT nanocomposite. Electrochim Acta 244:8–15CrossRefGoogle Scholar
  20. 20.
    Ni SB, Yang XL, Li T (2012) Fabrication of a porous NiS/Ni nanostructured electrode via a dry thermal sulfuration method and its application in a lithium ion battery. J Mater Chem 22:2395–2397CrossRefGoogle Scholar
  21. 21.
    Zhang Z, Zhao H, Zeng Z, Gao C, Wang J, Xia Q (2015) Hierarchical architectured NiS@SiO2 nanoparticles enveloped in graphene sheets as anode material for lithium ion batteries. Electrochim Acta 155:85–92CrossRefGoogle Scholar
  22. 22.
    Wang X, Liu X, Wang G, Zhou Y, Wang H (2017) General formation of three-dimensional (3D) interconnected MxSy (M = Ni, Zn, and Fe)-graphene nanosheets-carbon nanotubes aerogels for lithium-ion batteries with excellent rate capability and cycling stability. J Power Sources 342:105–115CrossRefGoogle Scholar
  23. 23.
    Guo S, Li J, Ma Z, Chi Y, Xue H (2016) A facile method to prepare FeS/porous carbon composite as advanced anode material for lithium-ion batteries. J Mater Sci 52:2345–2355. CrossRefGoogle Scholar
  24. 24.
    Wu Z, Li J, Zhong Y, Liu J, Wang K, Guo X, Huang L, Zhong B, Sun S (2016) Synthesis of FeS@C–N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. J Alloy Compd 688:790–797CrossRefGoogle Scholar
  25. 25.
    He L, Liao X, Yang K, He Y, Wen W, Ma Z (2011) Electrochemical characteristics and intercalation mechanism of ZnS/C composite as anode active material for lithium-ion batteries. Electrochim Acta 56:1213–1218CrossRefGoogle Scholar
  26. 26.
    Qin W, Li D, Zhang X, Yan D, Hu B, Pan L (2016) ZnS nanoparticles embedded in reduced graphene oxide as high performance anode material of sodium-ion batteries. Electrochim Acta 191:435–443CrossRefGoogle Scholar
  27. 27.
    Zhou Y, Yan D, Xu H, Feng J, Jiang X, Yue J, Yang J, Qian Y (2015) Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12:528–537CrossRefGoogle Scholar
  28. 28.
    Geng H, Yang J, Dai Z et al (2017) Co9S8/MoS2 yolk-shell spheres for advanced Li/Na storage. Small 13:1603490CrossRefGoogle Scholar
  29. 29.
    Yu DJ, Yuan YF, Zhang D, Yin SM, Lin JX, Rong Z, Yang JL, Chen YB, Guo SY (2016) Nickel cobalt sulfide nanotube array on nickel foam as anode material for advanced lithium-ion batteries. Electrochim Acta 198:280–286CrossRefGoogle Scholar
  30. 30.
    Wang Y, Kong D, Shi W, Liu B, Sim GJ, Ge Q, Yang HY (2016) Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv Energy Mater 6:1601057CrossRefGoogle Scholar
  31. 31.
    Su D, Kretschmer K, Wang G (2016) Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres. Adv Energy Mater 6:1501785CrossRefGoogle Scholar
  32. 32.
    Jiabao Li DY, Zhang Xiaojie, Hou Shujin, Ting Lu, Yao Yefeng, Pan Likun (2017) ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: a promising anode material for lithium-ion and sodium-ion batteries. J Mater Chem A 5:20428–20438CrossRefGoogle Scholar
  33. 33.
    Du X, Zhao H, Lu Y, Zhang Z, Kulka A, Świerczek K (2017) Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries. Electrochim Acta 228:100–106CrossRefGoogle Scholar
  34. 34.
    Du X, Zhao H, Zhang Z, Lu Y, Gao C, Li Z, Teng Y, Zhao L, Świerczek K (2017) Core-shell structured ZnS-C nanoparticles with enhanced electrochemical properties for high-performance lithium-ion battery anodes. Electrochim Acta 225:129–136CrossRefGoogle Scholar
  35. 35.
    Li NW, Yin YX, Xin S, Li JY, Guo YG (2017) Methods for the stabilization of nanostructured electrode materials for advanced rechargeable batteries. Small Methods 1:1700094CrossRefGoogle Scholar
  36. 36.
    Du H, Gui X, Yang R, Lin Z, Liang B, Chen W, Zheng Y, Zhu H, Chen J (2018) In situ sulfur loading in graphene-like nano-cell by template-free method for Li-S batteries. Nanoscale 10:3877–3883CrossRefGoogle Scholar
  37. 37.
    Wang J, Zhang Z, Zhang X, Yin X, Li X, Liu X, Kang F, Wei B (2017) Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39:647–653CrossRefGoogle Scholar
  38. 38.
    Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358CrossRefGoogle Scholar
  39. 39.
    Qiu Y, Li W, Zhao W et al (2014) High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett 14:4821–4827CrossRefGoogle Scholar
  40. 40.
    Fu Y, Zhang ZA, Yang X, Gan YQ, Chen W (2015) ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries. RSC Adv 5:86941–86944CrossRefGoogle Scholar
  41. 41.
    Ma J, Wang X, Wang H, Wang G, Ma S (2018) Hollow ZnS submicrospheres encapsulated in carbon shells with enhanced lithium and sodium storage properties. J Alloy Compd 735:51–61CrossRefGoogle Scholar
  42. 42.
    Park GD, Choi SH, Lee JK, Kang YC (2014) One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries. Chem A Eur J 20:12183–12189CrossRefGoogle Scholar
  43. 43.
    Laruelle S, Grugeon S, Poizot P, Dollé M, Dupont L, Tarascon JM (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:A627–A634CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Lab of Optoelectronic Materials and Technologies, School of Electronics and Information TechnologySun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Instrumental Analysis and Research Center (IARC)Sun Yat-sen UniversityGuangzhouPeople’s Republic of China
  3. 3.State Key Laboratory of Optoelectronic Materials and Technologies, School of PhysicsSun Yat-Sen UniversityGuangzhouChina
  4. 4.Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information TechnologySun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations