Journal of Materials Science

, Volume 53, Issue 20, pp 14160–14171 | Cite as

Electric and magnetic properties of ferromagnetic/piezoelectric bilayered composite

  • Marin Cernea
  • Bogdan Stefan Vasile
  • Vasile Adrian Surdu
  • Roxana Trusca
  • Cristina Bartha
  • Floriana Craciun
  • Carmen Galassi


One of the most promising ways for the realization of multi-functional materials is the integration of oxides with different properties in artificial heterostructures. In this paper, a novel piezoelectric–ferromagnetic heterostructure consisting of 0.92Na0.5Bi0.5TiO3–0.08BaTiO3 (abbreviated as BNT–BT0.08) and CoFe2O4 layers is fabricated on Si–Pt substrate, by sol–gel method coupled with spin-coating technique. The composite thin film shows only perovskite Bi0.5Na0.5TiO3-like rhombohedral phase and CoFe2O4 cubic phase. The thickness of CoFe2O4 and BNT–BT0.08 layers is ~ 280 and ~ 400 nm, respectively. BNT–BT0.08/CoFe2O4 heterostructure thin film shows a saturation magnetization of 0.11 emu/g at 5 K and 0.07 emu/g at 295 K, dielectric constant of 235 at 1 kHz and tunability of 70% at 1 kHz and an electric field E = 110 kV/cm. The results reveal that the investigated hybrid piezoelectric/ferromagnetic structure shows piezoelectric behavior, good ferroelectric and ferromagnetic properties. This bilayer composite can be used in miniature low-frequency magnetic sensor and piezoelectric sensor for biomedical domain.



The authors thank Matthias A. Fenner and Denis Fokin for assistance in piezoelectric characterization of the heterostructure thin film. The SEM analyses on samples were possible due to EU-funding grant POSCCE-A2-O2.2.1-2013-1/Priority direction 2, Project No. 638/12.03.2014, cod SMIS-CSNR 48652.

Compliance with ethical standards

Conflict of interest

The authors and the institutes where the work has been carried out declare that there are no conflicts of interest regarding the publication of this article.


  1. 1.
    He J, Nuzzo RG, Rogers JA (2015) Inorganic materials and assembly techniques for flexible and stretchable electronics. Proc IEEE 103:619–632CrossRefGoogle Scholar
  2. 2.
    Liu J, Fu TM, Cheng Z, Hong G, Zhou T, Jin L, Duvvuri M, Jiang Z, Kruskal P, Xie C, Suo Z, Fang Y, Lieber CM (2015) Syringe-injectable electronics. Nat Nanotechnol 10:629–636CrossRefGoogle Scholar
  3. 3.
    Zheng RY, Wang J, Ramakrishna S (2008) Electrical and magnetic properties of multiferroic BiFeO3/CoFe2O4 heterostructure. J Appl Phys 104:034106-1–034106-6Google Scholar
  4. 4.
    Bichurin MI, Petrov VM, Srinivasan G (2002) Modeling of magnetoelectric effect in ferromagnetic/piezoelectric multilayer composite. Ferroelectrics 280:165–175CrossRefGoogle Scholar
  5. 5.
    Zhang L, Zhai J, Mo W, Yao X (2010) The dielectric and leakage current behavior of CoFe2O4–BaTiO3 composite films prepared by combining method of sol-gel and electrophoretic deposition. Solid State Sci 12:509–514CrossRefGoogle Scholar
  6. 6.
    Spurgeon SR, Sloppy JD, Kepaptsoglou DM, Balachandran PV, Nejati S, Karthik J, Damodaran AR, Johnson CL, Ambaye H, Goyette R et al (2014) Thickness-dependent crossover from charge- to strain-mediated magnetoelectric coupling in ferromagnetic/piezoelectric oxide heterostructures. ACS Nano 8:894–903CrossRefGoogle Scholar
  7. 7.
    Mukherjee D, Dhakal T, Hyde R, Mukherjee P, Srikanth H, Witanachchi S (2010) Role of epitaxy in controlling the magnetic and magnetostrictive properties of cobalt ferrite–PZT bilayers. J Phys D Appl Phys 43:485001-1–485001-8Google Scholar
  8. 8.
    Bai Y, Chen J, Zhao S, Lu Q (2016) Magneto-dielectric and magnetoelectric anisotropies of CoFe2O4/Bi5Ti3FeO15 bilayer composite heterostructural films. RSC Adv. 6:52353–52359CrossRefGoogle Scholar
  9. 9.
    Bai Y, Zhao H, Chen J, Sun Y, Zhao S (2016) Strong magnetoelectric coupling effect of BiFeO3/Bi5Ti3FeO15 bilayer composite films. Ceram Int 42:10304–10309CrossRefGoogle Scholar
  10. 10.
    Zhou JP, Qiu ZC, Liu P (2008) Electric and magnetic properties of Pb(Zr0.52Ti0.48)O3–CoFe2O4 particle composite thin film on the SrTiO3 substrate. Mater Res Bull 43:3514–3520CrossRefGoogle Scholar
  11. 11.
    Ranvah N, Nlebedim IC, Melikhov Y, Snyder JE, Jiles DC, Moses AJ, Williams PI, Anayi F, Song SH (2008) Temperature dependence of magnetostriction of Co1+xGexFe2−2xO4 for magnetostrictive sensor and actuator applications. IEEE Trans Magn 44:3013–3016CrossRefGoogle Scholar
  12. 12.
    Paulsen JA, Ring AP, Lo CCH, Snyder JE, Jiles DC (2005) Manganese-substituted cobalt ferrite magnetostrictive materials for magnetic stress sensors applications. J Appl Phys 97:044502-1–044502-3CrossRefGoogle Scholar
  13. 13.
    Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21–29CrossRefGoogle Scholar
  14. 14.
    Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Schlom DG, Wuttig M, Roytburd A, Ramesh R (2004) Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303:661–663CrossRefGoogle Scholar
  15. 15.
    Vopsaroiu M, Blackburn J, Cain MG (2007) A new magnetic recording read head technology based on the magneto-electric effect. J Phys D Appl Phys 40:5027–5033CrossRefGoogle Scholar
  16. 16.
    Chen J, Tang Z, Lu Q, Zhao S (2018) Giant negative electrocaloric effect over a broad temperature range in lead-free based Bi0.5(K0.15Na0.85)0.05TiO3 relaxor ferroelectric films. J. Alloys Compd. 756:62–67CrossRefGoogle Scholar
  17. 17.
    Yu T, Kwok KW, Chan HLW (2007) The synthesis of lead-free ferroelectric Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 thin films by sol–gel method. Mater Lett 61:2117–2120CrossRefGoogle Scholar
  18. 18.
    Zhang DZ, Zheng XJ, Feng X, Zhang T, Sun J, Dai SH, Gong LJ, Gong YQ, He L, Zhu Z, Huang J, Xu X (2010) Ferro-piezoelectric properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 thin film prepared by metal–organic decomposition. J Alloys Compd 504:129–133CrossRefGoogle Scholar
  19. 19.
    Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30:2236–2239CrossRefGoogle Scholar
  20. 20.
    Li H, Feng C, Yao W (2004) Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3–BaTiO3 morphotropicphase-boundary composition. Mater Lett 58:1194–1198CrossRefGoogle Scholar
  21. 21.
    Chen M, Xu Q, Kim BH, Ahn BK, Ko JH, Kang WJ, Nam OJ (2008) Structure and electrical properties of (Na0.5Bi0.5)(1−x)BaxTiO3 piezoelectric ceramics. J Eur Ceram Soc 28:843–849CrossRefGoogle Scholar
  22. 22.
    Xu Q, Chen ST, Chen W, Wu SJ, Zhou J, Sun HJ, Li YM (2005) Synthesis and piezoelectric and ferroelectric properties of (Na0.5Bi0.5)(1−x)BaxTiO3 ceramics. Mater Chem Phys 90:111–115CrossRefGoogle Scholar
  23. 23.
    Cernea M, Trupina L, Dragoi C, Galca AC, Trinca L (2012) Structural, optical, and electric properties of BNT–BT0.08 thin films processed by sol-gel technique. J Mater Sci 47:6966–6971. CrossRefGoogle Scholar
  24. 24.
    Cernea M, Galizia P, Ciuchi IV, Aldica G, Mihalache V, Diamandescu L, Galassi C (2016) CoFe2O4 magnetic ceramic derived from gel and sintered by spark plasma sintering. J Alloys Compd 656:854–862CrossRefGoogle Scholar
  25. 25.
    Popescu M, Ghizdeanu C (1979) Cation distribution in cobalt ferrite-ahminates. Phys Status Solidi A 52:K169–K172CrossRefGoogle Scholar
  26. 26.
    Dai YQ, Dai JM, Tang XW, Zi ZF, Zhang KJ, Zhu XB, Yang J, Sun YP (2015) Cation distribution in cobalt ferrite-aluminates. J Magn Magn Mater 394:287–291CrossRefGoogle Scholar
  27. 27.
    Jones GO, Thomas PA (2000) The tetragonal phase of Na0.5Bi0.5TiO3—a new variant of the perovskite structure. Acta Crystallogr Sec B Struct Sci 56:426–430CrossRefGoogle Scholar
  28. 28.
    Xu C, Lin D, Kwok KW (2008) Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sci 10:934–940CrossRefGoogle Scholar
  29. 29.
    Tolea F, Grecu MN, Kuncser V, Constantinescu SG, Ghica D (2015) On the role of Fe ions on magnetic properties of doped TiO2 nanoparticles. Appl Phys Lett 106:142404 (1–5)CrossRefGoogle Scholar
  30. 30.
    Cordova G, Lee BY, Leonenko Z (2016) Magnetic force microscopy for nanoparticle characterization. NanoWorld J 2:10–14CrossRefGoogle Scholar
  31. 31.
    Zhou ZH, Xue JM, Li WZ, Wang J (2004) Ferroelectric and electrical behavior of (Na0.5Bi0.5)TiO3 thin films. Appl Phys Lett 85:804–806CrossRefGoogle Scholar
  32. 32.
    Pabst GW, Martin LW, Chu YH, Ramesh R (2007) Leakage mechanisms in BiFeO3 thin films. Appl Phys Lett 90:072902-1–072902-3CrossRefGoogle Scholar
  33. 33.
    Kholkin A, Kalinin S, Roelofs A, Gruverman A (2007) Review of ferroelectric domain imaging by piezoresponse force microscopy. In: Kalinin S, Gruverman A (eds) Scanning probe microscopy: electrical and electromechanical phenomena at the nanoscale. Springer, New YorkGoogle Scholar
  34. 34.
    Bousquet M, Batista L, Dellis JL, Boulle A, Rabe U, Durand-Drouhin O, Gagou Y, Dupont L, Viallet V, Zeinert A, Hirsekorn S, Lemee N (2014) Structural and electrical properties of Bi0.5Na0.5TiO3 based superlattices grown by pulsed laser deposition. J Appl Phys 116:194104-1–194104-8CrossRefGoogle Scholar
  35. 35.
    Chen J, Tang Z, Tian R, Bai Y, Zhao S, Zhang H (2016) Domain switching contribution to the ferroelectric, fatigue and piezoelectric properties of lead-free Bi0.5(Na0.85K0.15)0.5TiO3 films. RSC Adv 6:33834–33842CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marin Cernea
    • 1
  • Bogdan Stefan Vasile
    • 2
  • Vasile Adrian Surdu
    • 2
  • Roxana Trusca
    • 2
  • Cristina Bartha
    • 1
  • Floriana Craciun
    • 3
  • Carmen Galassi
    • 4
  1. 1.National Institute of Materials PhysicsBucharest-MagureleRomania
  2. 2.University Politehnica of BucharestBucharestRomania
  3. 3.Istituto di Struttura della Materia-CNR (ISM-CNR)RomeItaly
  4. 4.CNR-ISTEC, Institute of Science and Technology for CeramicsFaenzaItaly

Personalised recommendations