Advertisement

Journal of Materials Science

, Volume 53, Issue 20, pp 14241–14249 | Cite as

Preparation, characterization and catalytic oxidation properties of silica composites immobilized with cationic metalloporphyrins

  • Dongbo Zhao
  • Yongsong Wang
  • Yujing Xu
  • Ning Wang
  • Jun Li
Chemical routes to materials
  • 75 Downloads

Abstract

Herein, the metalloporphyrins Co(II) (5, 10, 15, 20-tetra (4-(3-(N-ethyl-4-pyridyl)pyrazolyl)phenyl)porphyrin) (CoTEtPyP) and Mn(III) (5, 10, 15, 20-tetra(4-(3-(N-ethyl-4-pyridyl)pyrazolyl)phenyl)porphyrin) (MnTEtPyP(OAc)) were synthesized and characterized spectroscopically. The cationic metalloporphyrins were firstly immobilized on the surface of SiO2 by electrostatic attractions with hydrothermal method to get the gels. Then, the gels were extracted by supercritical CO2 to remove the redundant solvent molecules and the unreacted metal salt. The structures and properties of porphyrin–SiO2 porous composites (PSC1 and PSC2) were characterized by Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, scanning electron microscopy, transmission electron microscope, powder X-ray diffraction, thermalgravimetric analysis and nitrogen sorption measurements. N2 absorptions have verified that the porous materials have large BET surface area and big N2 uptake capacity. The composites also have shown higher specific surface area and superior thermal stability. The catalytic activities of the new PSCs to the ethylbenzene oxidation carried out indicated that both of them exhibit highly selectivity of acetophenone (> 99%) with the conversion of 87.6% (PSC1) and 93.0% (PSC2), respectively.

Notes

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China [Grant Numbers 21671158, 21271148 and 21773184] for the financial support of this work.

Supplementary material

10853_2018_2662_MOESM1_ESM.doc (12.3 mb)
Supplementary material 1 (DOC 12599 kb)

References

  1. 1.
    Wang RX, Gao JB, Jiao WZ (2009) A novel method for immobilization of Co tetraphenylporphyrins on P(4VP-co-St)/SiO2: efficient catalysts for aerobic oxidation of ethylbenzenes. Appl Surf Sci 255:4109–4113CrossRefGoogle Scholar
  2. 2.
    Suslick KS, Bhyrappa P, Chou JH, Kosal ME, Nakagaky S, Smithenry DW, Wilson SR (2005) Microporous porphyrin solids. Acc Chem Res 38:283–291CrossRefGoogle Scholar
  3. 3.
    Farha OK, Shultz AM, Sarjeant AA, Nguyen ST, Hupp JT (2011) Active-site-accessible, porphyrinic metal-organic framework materials. J Am Chem Soc 133:5652–5655CrossRefGoogle Scholar
  4. 4.
    Fateeva A, Devautour-Vinot S, Heymans N, Devic T, Grenéche J, Wuttke S, Miller S, Lago A et al (2011) Series of porous 3-D coordination polymers based on iron(III) and porphyrin derivatives. Chem Mater 23:4641–4651CrossRefGoogle Scholar
  5. 5.
    Fagadar-Cosma E, Mirica MC, Balcu I, Bucovicean C, Cretu C, Armeanu I, Fagadar-Cosma G (2009) Syntheses, spectroscopic and AFM characterization of some manganese porphyrins and their hybrid silica nanomaterials. Molecules 14:1370–1388CrossRefGoogle Scholar
  6. 6.
    Shultz AM, Farha OK, Hupp JT, Nguyen ST (2011) Synthesis of catalytically active porous organic polymers from metalloporphyrin building blocks. Chem Sci 2:686–689CrossRefGoogle Scholar
  7. 7.
    Alkordi MH, Liu Y, Larsen RW, Eubank JF, Eddaoudi M (2008) Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. J Am Chem Soc 130:12639–12641CrossRefGoogle Scholar
  8. 8.
    Fidalgo-Marijuan A, Barandika G, Bazán B, Urtiaga MK, Arriortua MI (2011) Self-assembly of iron TCPP (meso-tetra(4-carboxyphenyl)porphyrin) into a chiral 2D coordination polymer. Polyhedron 30:2711–2716CrossRefGoogle Scholar
  9. 9.
    Guo CC, Song JX, Chen XB, Jiang GF (2000) A new evidence of the high-valent oxo–metal radical cation intermediate and hydrogen radical abstract mechanism in hydrocarbon hydroxylation catalyzed by metalloporphyrins. J Mol Catal A Chem 157:31–40CrossRefGoogle Scholar
  10. 10.
    Fu L, Chen Y, Liu Z (2015) Cobalt catalysts embedded in N-doped carbon derived from cobalt porphyrin via a one-pot method for ethylbenzene oxidation. J Mol Catal A Chem 408:91–97CrossRefGoogle Scholar
  11. 11.
    Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34:40–48CrossRefGoogle Scholar
  12. 12.
    Cardoso WS, Francisco MSP, Landers R, Gushikem Y (2005) Co (II) porphyrin absorbed on SiO2/SnO2/phosphate prepared by the sol-gel method application in electroreduction of dissolved dioxygen. Electrochim Acta 50:4378–4384CrossRefGoogle Scholar
  13. 13.
    Krishnakumar B, Balakrishna A, Nawabjan SA, Pandiyan V, Aguiar A, Sobral AJFN (2017) Solar and visible active amino porphyrin/ZnO for the degradation of naphthol blue black. J Phys Chem Solid 111:364–371CrossRefGoogle Scholar
  14. 14.
    Yoshida A, Kakegawa N, Ogawa M (2003) Adsorption of a cationic porphyrin onto mesoporous silicas. Res Chem Intermed 29:721–731CrossRefGoogle Scholar
  15. 15.
    Fujiwara ST, Gushikem Y, Pessoa CA, Nakagaki S (2005) Electrochemical studies of a new iron porphyrin entrapped in a propylpyridiniumsilsesquioxane polymer immobilized on a SiO2/Al2O3 surface. Electroanalysis 17:783–788CrossRefGoogle Scholar
  16. 16.
    Kim JY, Lee KY, Kim S, Lee SJ (2015) Preparation of Mn(III)-porphyrin-immobilized Fe3O4@SiO2 mesoparticles and their use in heterogeneous catalysis of styrene epoxidation. Bull Korean Chem Soc 36:1936–1939CrossRefGoogle Scholar
  17. 17.
    Pessôa CA, Gushikem Y, Nakagakib S (2002) Cobalt porphyrin immobilized on a niobium (V) oxide grafted-silica gel surface: study of the catalytic oxidation of hydrazine. Electroanalysis 14:1072–1076CrossRefGoogle Scholar
  18. 18.
    Ryu S, Liu L, Berciaud S, Yu Y, Liu H, Kim P, Flynn GW, Brus LE (2010) Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett 10:4944–4951CrossRefGoogle Scholar
  19. 19.
    Hofrichter J, Szafranek BN, Otto M, Echtermeyer TJ, Baus M, Majerus A, Geringer V, Ramsteiner M, Kurz H (2010) Synthesis of graphene on silicon dioxide by a solid carbon source. Nano Lett 10:36–42CrossRefGoogle Scholar
  20. 20.
    Whittaker JD, Minot ED, Tanenbaum DM, McEuen PL, Davis RC (2006) Measurement of the adhesion force between carbon nanotubes and a silicon dioxide substrate. Nano Lett 5:953–957CrossRefGoogle Scholar
  21. 21.
    Scherwitzl B, Lukesch W, Hirzer A, Albering J, Leising G, Resel R, Winkler A (2013) Initial steps of rubicene film growth on silicon dioxide. J Phys Chem C 117:4115–4123CrossRefGoogle Scholar
  22. 22.
    Zhang Z, Li J, Yao Y, Sun S (2015) Permanently porous Co(II) porphyrin-based hydrogen bonded framework for gas adsorption and catalysis. Cryst Growth Des 15:5028–5033CrossRefGoogle Scholar
  23. 23.
    Kishida T, Fujita N, Sada K, Shinkai S (2005) Porphyrin gels reinforced by sol-gel reaction via the organogel phase. Langmuir 21:9432–9439CrossRefGoogle Scholar
  24. 24.
    Wang Z, Yuan S, Mason A, Reprogle B, Liu D, Yu L (2012) Nanoporous porphyrin polymers for gas storage and separation. Macromolecules 45:7413–7419CrossRefGoogle Scholar
  25. 25.
    Modak A, Nandi M, Mondal J, Bhaumik A (2012) Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem Commun 48:248–250CrossRefGoogle Scholar
  26. 26.
    Takeuchi M, Tanaka S, Shinkai S (2005) On the influence of porphyrin p–p stacking on supramolecular chirality created in the porphyrin-based twisted tape structure. Chem Commun 44:5539–5541CrossRefGoogle Scholar
  27. 27.
    Ahrenholtz SR, Epley CC, Morris AJ (2014) Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. J Am Chem Soc 136:2464–2472CrossRefGoogle Scholar
  28. 28.
    Wang Z, Lybarger LE, Wang W, Medforth CJ, Miller JE, Shelnutt JA (2008) Monodisperse porphyrin nanospheres synthesized by coordination polymerization. Nanotechnology 19:395604CrossRefGoogle Scholar
  29. 29.
    Luca GD, Romeo A, Villari V, Micali N, Foltran I, Foresti I, Lesci IG, Roveri N, Zuccheri T, Scolaro LM (2009) Self-organizing functional materials via ionic self-assembly: porphyrins hand J-aggregates on synthetic chrysotile nanotubes. J Am Chem Soc 131:6920–6921CrossRefGoogle Scholar
  30. 30.
    Valicsek Z, Horváth O (2013) Application of the electronic spectra of porphyrins for analytical purposes: the effects of metal ions and structural distortions. Microchem J 107:47–62CrossRefGoogle Scholar
  31. 31.
    Rosenthal RA, Huffman KD, Fisette LW, Damphousse CW, Callaway WB, Malfroy B, Doctrow SR (2009) Orally available Mn porphyrins with superoxide dismutase and catalase activities. J Biol Inorg Chem 14:979–991CrossRefGoogle Scholar
  32. 32.
    Yoo J, Park N, Park JH, Park JH, Kang S, Lee SM, Kim HJ, Jo H, Park J, Son SU (2015) Magnetically separable microporous Fe–porphyrin networks for catalytic carbene insertion into N–H bonds. ACS Catal 5:350–355CrossRefGoogle Scholar
  33. 33.
    Farha OK, Malliakas CD, Kanatzidis MG, Hupp JT (2010) Control over catenation in metal-organic frameworks via rational design of the organic building block. J Am Chem Soc 132:950–952CrossRefGoogle Scholar
  34. 34.
    Zhao X, Yuan L, Zhang Z, Wang Y, Yu Q, Li J (2016) Synthetic methodology for the fabrication of porous porphyrin materials with metal-organic-polymer Aerogels. Inorg Chem 55:5287–5296CrossRefGoogle Scholar
  35. 35.
    Groen JC, Peffer LAA, pérez-Ramírez J (2003) Pore size determination in modified micro-and mesoporous materials. pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60:1–17CrossRefGoogle Scholar
  36. 36.
    Ohmura T, Usuki A, Fukumori K, Ohta T, Ito M, Tatsumi K (2006) New porphyrin-based metal-organic framework with high porosity: 2-D infinite 22.2-Å square-grid coordination network. Inorg Chem 45:7988–7990CrossRefGoogle Scholar
  37. 37.
    Zhang JL, Huang JS, Che CM (2006) Oxidation chemistry of poly(ethylene glycol)-supported carbonylruthenium(ii) and dioxoruthenium(vi) meso-tetrakis(pentafluorophenyl)porphyrin. Chem Eur J 12:3020–3031CrossRefGoogle Scholar
  38. 38.
    Meunier B (2000) In biomimetic oxidations catalyzed by transition metal complexes. Imperial College Press, LondonCrossRefGoogle Scholar
  39. 39.
    Imran G, Pachamuthu MP, Maheswari R, Ramanathan A, Sardhar Basha SJ (2012) Catalytic activity of MnTUD-1 for liquid phase oxidation of ethylbenzene with tert-butyl hydroperoxide. J Porous Mater 19:677–682CrossRefGoogle Scholar
  40. 40.
    Ricca C, Labat F, Russo N, Adamo C, Sicilia E (2014) Oxidation of ethylbenzene to acetophenone with N-doped graphene: insight from theory. J Phys Chem C 118:12275–12284CrossRefGoogle Scholar
  41. 41.
    Gutmann B, Elsner P, Roberge D, Kappe CO (2013) Homogeneous liquid-phase oxidation of ethylbenzene to acetophenone in continuous flow mode. ACS Catal 3:2669–2676CrossRefGoogle Scholar
  42. 42.
    Qiu Y, Yang C, Huo J, Liu Z (2016) Synthesis of Co-N-C immobilized on carbon nanotubes for ethylbenzene oxidation. J Mol Catal A Chem 424:276–282CrossRefGoogle Scholar
  43. 43.
    Jiang W, Yang J, Liu YY, Ma JF (2016) Porphyrin-based mixed-valent Ag(I)/Ag(II) and Cu(I)/Cu(II) networks as efficient heterogeneous catalysts for the azide–alkyne ‘‘click’’ reaction and promising oxidation of ethylbenzene. Chem Commun 52:1373–1376CrossRefGoogle Scholar
  44. 44.
    DeVos DE, Sels BF, Jacobs PA (2001) Immobilization of homogeneous oxidation catalysts. Adv Catal 46:1–87Google Scholar
  45. 45.
    Zou C, Zhang Z, Xu X, Gong Q, Li J, Wu CD (2011) A multifunctional organic–inorganic hybrid structure based on MnIII-porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst. J Am Chem Soc 134:87–90CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials ScienceNorthwest UniversityXi’anChina

Personalised recommendations