Journal of Materials Science

, Volume 53, Issue 20, pp 14423–14434 | Cite as

Amorphous germanium as a promising anode material for sodium ion batteries: a first principle study

  • Vidushi Sharma
  • Kamalika Ghatak
  • Dibakar Datta


The abundance of sodium (Na), its low-cost, and low reduction potential provide a lucrative inexpensive, safe, and environmentally benign alternative to lithium ion batteries (LIBs). The significant challenges in advancing sodium ion battery (NIB) technologies lie in finding the better electrode materials. Experimental investigations revealed the real potency of germanium (Ge) as suitable anode materials for NIBs. However, a systematic atomistic study is necessary to understand the fundamental aspects of capacity–voltage correlation, microstructural changes of Ge, as well as diffusion kinetics. We, therefore, performed the Density Functional Theory (DFT) and Ab Initio Molecular Dynamics (AIMD) simulation to investigate the sodiation–desodiation kinetics in germanium–sodium system (Na64Ge64). We analyzed the intercalation potential and capacity correlation for intermediate equilibrium structures and compared our data with the experimental results. Effect of sodiation on inter-atomic distances within Na–Ge system is analyzed by means of Pair Correlation Function (PCF). This provides insight into possible microstructural changes taking place during sodiation of amorphous Ge (a-Ge). We further investigated the diffusivity of sodium in a-Ge electrode material and analyzed the volume expansion trend for Na64Ge64 electrode system. Our computational results provide the fundamental insight into the atomic scale and help experimentalists design Ge-based NIBs for real-life applications.



DD acknowledges NJIT for the faculty start-up package. We thank Prof. Siva Nadimpalli of NJIT for his suggestion throughout the project. We are grateful to the High-Performance Computing (HPC) facilities managed by Academic and Research Computing Systems (ARCS) in the Department of Information Services and Technology (IST) of the New Jersey Institute of Technology (NJIT). Some computations were performed on HPC cluster, managed by ARCS. We acknowledge the support of the Extreme Science and Engineering Discovery Environment (XSEDE) for providing us their computational facilities (Start-Up Allocation—DMR170065 and Research Allocation—DMR180013). Most of these calculations were performed in XSEDE SDSC COMET Cluster.

Supplementary material

10853_2018_2661_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1320 kb)


  1. 1.
    Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127CrossRefGoogle Scholar
  2. 2.
    Whittingham MS, Thompson AH (1975) Intercalation and lattice expansion in titanium disulfide. J Chem Phys 62(4):1588CrossRefGoogle Scholar
  3. 3.
    Tarascon J-M, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific, pp 171–179Google Scholar
  4. 4.
    de la Llave E, Borgel V, Park K-J, Hwang J-Y, Sun Y-K, Hartmann P, Chesneau F-F, Aurbach D (2016) Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Appl Mater Interfaces 8(3):1867–1875CrossRefGoogle Scholar
  5. 5.
    Böhm H, Beyermann G (1999) ZEBRA batteries, enhanced power by doping. J Power Sources 84(2):270–274CrossRefGoogle Scholar
  6. 6.
    Nithya C, Gopukumar S (2015) Sodium ion batteries: a newer electrochemical storage. Wiley Interdiscip Rev Energy Environ 4(3):253–278CrossRefGoogle Scholar
  7. 7.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682CrossRefGoogle Scholar
  8. 8.
    Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54(11):3431–3448CrossRefGoogle Scholar
  9. 9.
    Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 2015(6):1016–1055CrossRefGoogle Scholar
  10. 10.
    Stojić M, Kostić D, Stošić B (1986) The behaviour of sodium in Ge, Si and GaAs. Physica B + C 138(1–2):125–128CrossRefGoogle Scholar
  11. 11.
    Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B + C 99(1–4):81–85CrossRefGoogle Scholar
  12. 12.
    Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10(1):74–80CrossRefGoogle Scholar
  13. 13.
    Shiva K, Singh P, Zhou W, Goodenough JB (2016) NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery. Energy Environ Sci 9(10):3103–3106CrossRefGoogle Scholar
  14. 14.
    Xu J, Lee DH, Meng YS (2013) Recent advances in sodium intercalation positive electrode materials for sodium ion batteries. Funct Mater Lett 6(01):1330001–1330007CrossRefGoogle Scholar
  15. 15.
    Okamoto Y (2013) Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J Phys Chem C 118(1):16–19CrossRefGoogle Scholar
  16. 16.
    Balogun M-S, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178CrossRefGoogle Scholar
  17. 17.
    Chevrier V, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158(9):A1011–A1014CrossRefGoogle Scholar
  18. 18.
    Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem Int Ed 53(38):10169–10173CrossRefGoogle Scholar
  19. 19.
    Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033-1–4033-10Google Scholar
  20. 20.
    Mei Y, Huang Y, Hu X (2016) Nanostructured Ti-based anode materials for Na-ion batteries. J Mater Chem A 4(31):12001–12013CrossRefGoogle Scholar
  21. 21.
    Legrain F, Malyi O, Manzhos S (2015) Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J Power Sources 278:197–202CrossRefGoogle Scholar
  22. 22.
    Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8(10):2916–2921CrossRefGoogle Scholar
  23. 23.
    Klein F, Jache B, Bhide A, Adelhelm P (2013) Conversion reactions for sodium-ion batteries. Phys Chem Chem Phys 15(38):15876–15887CrossRefGoogle Scholar
  24. 24.
    Mortazavi M, Ye Q, Birbilis N, Medhekar NV (2015) High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights. J Power Sources 285:29–36CrossRefGoogle Scholar
  25. 25.
    Mortazavi M, Deng J, Shenoy VB, Medhekar NV (2013) Elastic softening of alloy negative electrodes for Na-ion batteries. J Power Sources 225:207–214CrossRefGoogle Scholar
  26. 26.
    Stevens D, Dahn J (2000) An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J Electrochem Soc 147(12):4428–4431CrossRefGoogle Scholar
  27. 27.
    Wang Y-X, Chou S-L, Liu H-K, Dou S-X (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208CrossRefGoogle Scholar
  28. 28.
    Li D, Zhang L, Chen H, Wang J, Ding L-X, Wang S, Ashman PJ, Wang H (2016) Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. J Mater Chem A 4(22):8630–8635CrossRefGoogle Scholar
  29. 29.
    Usui H, Yoshioka S, Wasada K, Shimizu M, Sakaguchi H (2015) Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl Mater Interfaces 7(12):6567–6573CrossRefGoogle Scholar
  30. 30.
    Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81(3):454–456CrossRefGoogle Scholar
  31. 31.
    Fu S, Ni J, Xu Y, Zhang Q, Li L (2016) Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for Sodium-ion batteries. Nano Lett 16(7):4544–4551CrossRefGoogle Scholar
  32. 32.
    Li H, Fei H, Liu X, Yang J, Wei M (2015) In situ synthesis of Na2 Ti7 O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. Chem Commun 51(45):9298–9300CrossRefGoogle Scholar
  33. 33.
    Jung SC, Jung DS, Choi JW, Han Y-K (2014) Atom-level understanding of the sodiation process in silicon anode material. J Phys Chem Lett 5(7):1283–1288CrossRefGoogle Scholar
  34. 34.
    Abel PR, Lin Y-M, de Souza T, Chou C-Y, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB (2013) Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C 117(37):18885–18890CrossRefGoogle Scholar
  35. 35.
    Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68CrossRefGoogle Scholar
  36. 36.
    Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48(6):1657–1665CrossRefGoogle Scholar
  37. 37.
    Baggetto L, Ganesh P, Meisner RP, Unocic RR, Jumas J-C, Bridges CA, Veith GM (2013) Characterization of sodium ion electrochemical reaction with tin anodes: experiment and theory. J Power Sources 234:48–59CrossRefGoogle Scholar
  38. 38.
    Malyi OI, Tan TL, Manzhos S (2013) A comparative computational study of structures, diffusion, and dopant interactions between Li and Na insertion into Si. Appl Phys Express 6(2):027301-1–027301-3CrossRefGoogle Scholar
  39. 39.
    Kulish VV, Malyi OI, Ng M-F, Chen Z, Manzhos S, Wu P (2014) Controlling Na diffusion by rational design of Si-based layered architectures. Phys Chem Chem Phys 16(9):4260–4267CrossRefGoogle Scholar
  40. 40.
    Baggetto L, Keum JK, Browning JF, Veith GM (2013) Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun 34:41–44CrossRefGoogle Scholar
  41. 41.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  42. 42.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRefGoogle Scholar
  43. 43.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRefGoogle Scholar
  44. 44.
    Johari P, Qi Y, Shenoy VB (2011) The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study. Nano Lett 11(12):5494–5500CrossRefGoogle Scholar
  45. 45.
    Farbod B, Cui K, Kalisvaart WP, Kupsta M, Zahiri B, Kohandehghan A, Lotfabad EM, Li Z, Luber EJ, Mitlin D (2014) Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano 8(5):4415–4429CrossRefGoogle Scholar
  46. 46.
    Jung SC, Kim H-J, Kang Y-J, Han Y-K (2016) Advantages of Ge anode for Na-ion batteries: Ge versus Si and Sn. J Alloy Compd 688:158–163CrossRefGoogle Scholar
  47. 47.
    Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614CrossRefGoogle Scholar
  48. 48.
    Grigorovici R, Mǎnǎilǎ R (1969) Short-range order in amorphous germanium. J Non-Cryst Solids 1(5):371–387CrossRefGoogle Scholar
  49. 49.
    Panchmatia PM, Armstrong AR, Bruce PG, Islam MS (2014) Lithium-ion diffusion mechanisms in the battery anode material Li1+xV1−xO2. Phys Chem Chem Phys 16(39):21114–21118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations