Advertisement

Journal of Materials Science

, Volume 53, Issue 20, pp 14361–14374 | Cite as

Crystallization behaviors and properties of poly (arylene ether nitrile) nanocomposites induced by aluminum oxide and multi-walled carbon nanotubes

  • Xulin Yang
  • Kui Li
  • Mingzhen Xu
  • Xiaobo Liu
Composites

Abstract

The effect of Al2O3 and MCNT nanoparticles on the crystallization behaviors, subsequent melting phenomenon, microstructures and mechanical performances of PEEN-based nanocomposites was first investigated and reported. It was found that the absence of nucleating role of Al2O3 made PEEN/Al2O3 nanocomposites show similar melting/cold crystallization and corresponding melting behaviors as those of PEEN matrix. By contrast, MCNT could play two different and competing roles in the crystallization process: acting as nucleating agents and constraining the mobility of polymer chains to hinder crystal growth. Consequently, PEEN/MCNT nanocomposites exhibit the increased Tc, but the decreased Wc, and double Tms. Heat treatment at 220 °C for 2 h turned to be an effective way to finish the cold crystallization process for PEEN and their nanocomposites. SEM images showed that spherical crystallite clusters could be clearly observed in PEEN and PEEN/Al2O3 nanocomposite, which were in well agreement with the DSC and WXRD results. The higher Wc of PEEN/Al2O3 nanocomposites also led to better impact and flexural strength than those of PEEN/MCNT nanocomposite. This research is expected to help us understand the crystallization behaviors and final properties of PEEN-based materials influenced with these two different dimensional nanoparticles.

Notes

Acknowledgements

The authors wish to thank for financial support of this work from the National Natural Science Foundation of China (No. 51773028).

References

  1. 1.
    Matsuo S, Murakami T, Takasawa R (1993) Synthesis and properties of new crystalline poly (arylene ether nitriles). J Polym Sci Part A Polym Chem 31(13):3439–3446CrossRefGoogle Scholar
  2. 2.
    Gao Y, Robertson GP, Guiver MD, Mikhailenko SD, Li X, Kaliaguine S (2005) Synthesis of copoly (aryl ether ether nitrile)s containing sulfonic acid groups for PEM application. Macromolecules 38(8):3237–3245CrossRefGoogle Scholar
  3. 3.
    Saxena A, Sadhana R, Rao VL, Kanakavel M, Ninan KN (2003) Synthesis and properties of polyarylene ether nitrile copolymers. Polym Bull 50(4):219–226Google Scholar
  4. 4.
    Lai AN, Wang LS, Lin CX, Zhuo YZ, Zhang QG, Zhu AM, Liu QL (2015) Benzylmethyl-containing poly (arylene ether nitrile) as anion exchange membranes for alkaline fuel cells. J Membr Sci 481:9–18CrossRefGoogle Scholar
  5. 5.
    Gao Y, Robertson GP, Kim DS, Guiver MD, Mikhailenko SD, Li X, Kaliaguine S (2007) Comparison of PEM properties of copoly (aryl ether ether nitrile)s containing sulfonic acid bonded to naphthalene in structurally different ways. Macromolecules 40(5):1512–1520CrossRefGoogle Scholar
  6. 6.
    Saxena A, Sadhana R, Rao VL, Ravindran PV, Ninan KN (2005) Synthesis and properties of poly (ether nitrile sulfone) copolymers with pendant methyl groups. J Appl Polym Sci 97(5):1987–1994CrossRefGoogle Scholar
  7. 7.
    Zou YK, Yang J, Zhan YQ, Yang XL, Zhong JC, Zhao R, Liu XB (2012) Effect of curing behaviors on the properties of poly (arylene ether nitrile) endcapped with phthalonitrile. J Appl Polym Sci 125(5):3829–3835CrossRefGoogle Scholar
  8. 8.
    Jikei M, Itoh H, Yoshida N, Inai Y, Hayakawa T, Kakimoto MA (2009) Synthesis of hyperbranched poly (ether nitrile)s by one-step polycondensation of an AB2 monomer. J Polym Sci Part A Polym Chem 47(21):5835–5844CrossRefGoogle Scholar
  9. 9.
    Hamciuc C, Hamciuc E, Ignat M, Zarnescu G (2009) Aromatic poly (ether imide)s containing nitrile groups. High Perform Polym 21(2):205–218CrossRefGoogle Scholar
  10. 10.
    Takahashi T, Kato H, Ma SP, Sasaki T, Sakurai K (1995) Morphology of a wholly aromatic thermoplastic, poly (ether nitrile). Polymer 36(20):3803–3808CrossRefGoogle Scholar
  11. 11.
    Tang HL, Pu ZJ, Huang X, Wei JJ, Liu XB, Lin ZQ (2014) Novel blue-emitting carboxyl-functionalized poly (arylene ether nitrile)s with excellent thermal and mechanical properties. Polym Chem 5(11):3673–3679CrossRefGoogle Scholar
  12. 12.
    Yang XL, Wang ZC, Xu MZ, Zhao R, Liu XB (2013) Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: carbon fiber and graphene nanoplatelet. Mater Des 44:74–80CrossRefGoogle Scholar
  13. 13.
    Seong YH, Won J, Kim SK, Nam K, Kim SK, Kim DW (2011) Synthesis and characterization of proton exchange membranes based on sulfonated poly (fluorenyl ether nitrile oxynaphthalate) for direct methanol fuel cells. Int J Hydrog Energy 36(14):8492–8498CrossRefGoogle Scholar
  14. 14.
    Meng FB, Zhao R, Xu MZ, Zhan YQ, Lei YJ, Zhong JC, Liu XB (2011) Fe–phthalocyanine oligomer/Fe3O4 nano-hybrid particles and their effect on the properties of polyarylene ether nitriles magnetic nanocomposites. Coll Surf A Physicochem Eng Asp 375(1–3):245–251CrossRefGoogle Scholar
  15. 15.
    Saxena A, Francis B, Rao VL, Ninan KN (2007) Toughening of an epoxy resin with hydroxyl-terminated poly (arylene ether nitrile) with pendent tertiary butyl groups. J Appl Polym Sci 106(2):1318–1331CrossRefGoogle Scholar
  16. 16.
    Kim YS, Kim DS, Liu B, Guiver MD, Pivovar BS (2008) Copoly (arylene ether nitrile)s-high-performance polymer electrolytes for direct methanol fuel cells. J Electrochem Soc 155(1):B21–B26CrossRefGoogle Scholar
  17. 17.
    Zhan YQ, Yang XL, Guo H, Yang J, Meng FB, Liu XB (2012) Cross-linkable nitrile functionalized graphene oxide/poly (arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability. J Mater Chem 22(12):5602–5608CrossRefGoogle Scholar
  18. 18.
    Lakshmana Rao V, Saxena A, Ninan KN (2002) Poly (arylene ether nitriles). J Macromol Sci Part C Polym Rev 42(4):513–540CrossRefGoogle Scholar
  19. 19.
    Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43(8):2895–2907CrossRefGoogle Scholar
  20. 20.
    Lee SH, Hahn JR, Ku BC, Kim JK (2011) Effect of carbon nanofiber structure on crystallization kinetics of polypropylene/carbon nanofiber composites. Bull Korean Chem Soc 32(7):2369–2376CrossRefGoogle Scholar
  21. 21.
    Tu L, You Y, Tong LF, Wang YJ, Hu WB, Wei RB, Liu XB (2018) Crystallinity of poly (arylene ether nitrile) copolymers containing hydroquinone and bisphenol A segments. J Appl Polym Sci 135(26):46412CrossRefGoogle Scholar
  22. 22.
    You Y, Wei RB, Yang RQ, Yang W, Hua XF, Liu XB (2016) Crystallization behaviors of polyarylene ether nitrile filled in multi-walled carbon nanotubes. RSC Adv 6(75):70877–70883CrossRefGoogle Scholar
  23. 23.
    Xu JZ, Zhong GJ, Hsiao BS, Fu Q, Li ZM (2014) Low-dimensional carbonaceous nanofiller induced polymer crystallization. Prog Polym Sci 39(3):555–593CrossRefGoogle Scholar
  24. 24.
    Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810CrossRefGoogle Scholar
  25. 25.
    Lozano K, Barrera EV (2001) Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J Appl Polym Sci 79(1):125–133CrossRefGoogle Scholar
  26. 26.
    Sui G, Zhong WH, Fuqua MA, Ulven CA (2007) Crystalline structure and properties of carbon nanofiber composites prepared by melt extrusion. Macromol Chem Phys 208(17):1928–1936CrossRefGoogle Scholar
  27. 27.
    Zhu JH, Wei SY, Zhang L, Mao YB, Ryu J, Haldolaarachchige N, Young DP, Guo ZH (2011) Electrical and dielectric properties of polyaniline–Al2O3 nanocomposites derived from various Al2O3 nanostructures. J Mater Chem 21(11):3952–3959CrossRefGoogle Scholar
  28. 28.
    Goyal RK, Tiwari AN, Mulik UP, Negi YS (2007) Novel high performance Al2O3/poly (ether ether ketone) nanocomposites for electronics applications. Compos Sci Technol 67(9):1802–1812CrossRefGoogle Scholar
  29. 29.
    Kuo MC, Tsai CM, Huang JC, Chen M (2005) PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Mater Chem Phys 90(1):185–195CrossRefGoogle Scholar
  30. 30.
    Sandler J, Werner P, Shaffer MS, Demchuk V, Altstädt V, Windle AH (2002) Carbon-nanofibre-reinforced poly (ether ether ketone) composites. Compos A Appl Sci Manuf 33(8):1033–1039CrossRefGoogle Scholar
  31. 31.
    Wei CL, Chen M, Yu FE (2003) Temperature modulated DSC and DSC studies on the origin of double melting peaks in poly (ether ether ketone). Polymer 44(26):8185–8193CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Qiu Z, Yang W (2008) Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly (L-lactide). J Phys Chem B 112(51):16461–16468CrossRefGoogle Scholar
  33. 33.
    Li SN, Li ZM, Yang MB, Hu ZQ, Xu XB, Huang R (2004) Carbon nanotubes induced nonisothermal crystallization of ethylene–vinyl acetate copolymer. Mater Lett 58(30):3967–3970CrossRefGoogle Scholar
  34. 34.
    Xu ZH, Niu YH, Wang ZG, Li H, Yang L, Qiu J, Wang H (2011) Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Appl Mater Interfaces 3(9):3744–3753CrossRefGoogle Scholar
  35. 35.
    Pang H, Zhong GJ, Wang Y, Xu JZ, Li ZM, Lei J, Ji X (2012) In-situ synchrotron x-ray scattering study on isothermal crystallization of ethylene–vinyl acetate copolymers containing a high weight fraction of carbon nanotubes and graphene nanosheets. J Polym Res 19(3):9837CrossRefGoogle Scholar
  36. 36.
    Bautista FM, Campelo JM, Garcia A, Luna D, Marinas JM, Moreno MC, Romeroa AA, Naviob JA, Macias M (1998) Structural and textural characterization of AIPO4–B2O3 and Al2O3–B2O3 (5–30 wt% B2O3) systems obtained by boric acid impregnation. J Catal 173(2):333–344CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Branch of Advanced Functional Materials, School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations