Journal of Materials Science

, Volume 53, Issue 19, pp 13987–14000 | Cite as

The preparation of porous carbon spheres with hierarchical pore structure and the application for high-performance supercapacitors

  • Zhihong TangEmail author
  • Song Jiang
  • Shuling Shen
  • Junhe YangEmail author
Energy materials


Porous carbon spheres with hierarchical pore structure were prepared by an aerosol method from glucose, the formation process was proposed, and the electrochemical performance of the sample was evaluated in both KOH and TEA-BF4/AN electrolyte. Due to the hierarchical pore structure, high specific surface area and spherical morphology, the sample demonstrated excellent electrochemical performance. The specific capacitance of the material in KOH and TEA-BF4/AN was up to 240 and 80 F g−1, respectively, and the capacity retention was about 77% when the current density increased to 10 A g−1 in KOH. It was worth noting that the specific capacitance decreased little even when the mass loading increased to 10.5 mg and the current density increased to 5 A g−1, which was potential for the large-scale utilization of the material as electrode.



This work was financially sponsored by Basic Research Program of Shanghai (15JC-1490700, 16JC1402200) and Shanghai Nature Science Foundation (16ZR1423400).


  1. 1.
    Jiang D, Wu J (2013) Microscopic insights into the electrochemical behavior of nonaqueous electrolytes in electric double-layer capacitors. J Phys Chem Lett 4(8):1260–1267CrossRefGoogle Scholar
  2. 2.
    Sun XZ, Zhang X, Liu WJ, Wang K, Li C, Li Z, Ma YW (2017) Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor. Electrochim Acta 235:158–166CrossRefGoogle Scholar
  3. 3.
    Milow B, Schwan M, Dong WP, Friedrich KA (2017) Synthesis and characterization of carbon aerogels as active material for double layer capacitors. Int Conf Multifunct Hybrid Nanomater 3:131Google Scholar
  4. 4.
    Thirumal V, Pandurangan A, Jayavel R, Ilangovan R (2016) Preparation and characterization of carbon nanotubes for supercapacitor applications. Synth Met 220:524–532CrossRefGoogle Scholar
  5. 5.
    Chen KY, Huang XB, Wan CY, Liu H (2015) Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes. Chem Commun 51:7891–7894CrossRefGoogle Scholar
  6. 6.
    Tang ZH, Li XD, Han Z, Yao L, Shen SL, Yang JH (2016) Controllable crumpling of N-doped graphene induced by capillary force resistance. RSC Adv 6(90):87796–87801CrossRefGoogle Scholar
  7. 7.
    Balaji SS, Elavarasan A, Sathish M (2016) High performance supercapacitor using N-doped graphene prepared via supercritical fluid processing with an oxime nitrogen source. Electrochim Acta 200:37–45CrossRefGoogle Scholar
  8. 8.
    Dutta S, Kim J, Ide Y, Kim JH, Hossain MS, Bando Y, Yamauchi Y, Wu KCW (2017) 3D network of cellulose-based energy storage devices and related emerging applications. Mater Horiz 4(4):522–545CrossRefGoogle Scholar
  9. 9.
    Nguyen CV, Liao YT, Kang TC, Chen JE, Yoshikawa T, Nakasaka Y, Masuda T, Wu KCW (2016) A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. Green Chem 18(22):5957–5961CrossRefGoogle Scholar
  10. 10.
    Gao J, Wang XY, Zhang YW, Liu J, Lu Q, Liu M (2016) Boron-doped ordered mesoporous carbons for the application of supercapacitors. Electrochim Acta 207:266–274CrossRefGoogle Scholar
  11. 11.
    Gao J, Wang XY, Zhang YW, Liu J, Lu Q, Chen MF, Bai YS (2016) Preparation and supercapacitive performance of nanosized manganese dioxide/ordered mesoporous carbon composites. Electrochim Acta 192:234–242CrossRefGoogle Scholar
  12. 12.
    Liu J, Wang XY, Lu Q, Yu RZ, Chen MF, Cai SY, Wang XY (2016) Synthesis of nitrogen and sulfur co-doped carbon derived from chromium carbide for the high performance supercapacitor. J Electrochem Soc 163(14):A2991–A2998CrossRefGoogle Scholar
  13. 13.
    Lu AH, Hao GP, Sun Q, Zhang XQ, Li WC (2012) Chemical synthesis of carbon materials with intriguing nanostructure and morphology. Macromol Chem Phys 213(10–11):1107–1131CrossRefGoogle Scholar
  14. 14.
    Liu SM, Cai YJ, Zhao X, Liang YR, Zheng MT, Hu H, Dong HW, Jiang SP, Liu YL, Xiao Y (2017) Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor. J Power Sour 360:373–382CrossRefGoogle Scholar
  15. 15.
    Fang XL, Zang J, Wang XL, Zheng MS, Zheng NF (2014) A multiple coating route to hollow carbon spheres with foam-like shells and their applications in supercapacitor and confined catalysis. J Mater Chem A 2:6191–6197CrossRefGoogle Scholar
  16. 16.
    Liu L, Xu SD, Yu Q, Wang FY, Zhu HL, Zhang RL, Liu X (2016) Nitrogen-doped hollow carbon spheres with a wrinkled surface: their one-pot carbonization synthesis and supercapacitor properties. Chem Commun 52(78):11693–11695CrossRefGoogle Scholar
  17. 17.
    Zhang Q, Li L, Wang YL, Chen YJ, He F, Gai SL, Yang PP (2015) Uniform fibrous-structured hollow mesoporous carbon spheres for high-performance supercapacitor electrodes. Electrochim Acta 176:542–547CrossRefGoogle Scholar
  18. 18.
    Ma C, Chen XY, Long DH, Wang JT, Qiao WM, Ling LC (2017) High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor. Carbon 118:699–708CrossRefGoogle Scholar
  19. 19.
    Wickramaratne NP, Xu JT, Wang M, Zhu L, Dai LM, Jaroniec M (2014) Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem Mater 26(9):2820–2828CrossRefGoogle Scholar
  20. 20.
    Zhang NS, Gao N, Fu CP, Liu D, Li SC, Jiang LL, Zhou HH, Kuang YF (2017) Hierarchical porous carbon spheres/graphene composite for supercapacitor with both aqueous solution and ionic liquid. Electrochim Acta 235:340–347CrossRefGoogle Scholar
  21. 21.
    Falco C, Sieben JM, Brun N, Sevilla M, Mauelen TVD, Morallón E, Cazorla-Amós D (2013) Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. Chemsuschem 6(2):374–382CrossRefGoogle Scholar
  22. 22.
    Yu XL, Lu JM, Zhan CZ, Lv R, Liang QH, Huang ZH, Shen WC, Kang FY (2015) Synthesis of activated carbon nanospheres with hierarchical porous structure for high volumetric performance supercapacitors. Electrochim Acta 182:908–916CrossRefGoogle Scholar
  23. 23.
    Skrabalak SE, Suslick KS (2006) Porous carbon powders prepared by ultrasonic spray pyrolysis. J Am Chem Soc 128(39):12642–12643CrossRefGoogle Scholar
  24. 24.
    Skrabalak SE, Suslick KS (2007) Carbon powders prepared by ultrasonic spray pyrolysis of substituted alkali benzoates. J Phys Chem C 111(48):17807–17811CrossRefGoogle Scholar
  25. 25.
    Fortunato ME, Rostamabadi M, Suslick KS (2010) Nanostructured carbons prepared by ultrasonic spray pyrolysis. Chem Mater 238(5):1610–1612CrossRefGoogle Scholar
  26. 26.
    Xu HX, Guo JR, Suslick KS (2012) Porous carbon spheres from energetic carbon precursors using ultrasonic spray pyrolysis. Adv Mater 24(45):6028–6033CrossRefGoogle Scholar
  27. 27.
    Yamamoto E, Kuroda K (2016) Colloidal mesoporous silica nanoparticles. Bull Chem Soc Jpn 89(5):501–539CrossRefGoogle Scholar
  28. 28.
    Chen HS, Chiang YD, Kung CW, Sakai N, Ikegami M, Yamauchi Y, Wu KCW, Miyasaka T, Ho KC (2014) Highly efficient plastic-based quasi-solid-state dye-sensitized solar cells with light-harvesting mesoporous silica nanoparticles gel-electrolyte. J Power Sour 245:411–417CrossRefGoogle Scholar
  29. 29.
    Shieh FK, Hsiao CT, Kao HM, Sue YC, Lin KW, Wu CC, Chen XH, Wan L, Hsu MH, Hwu JR, Tsung CK, Wu KCW (2013) Size-adjustable annular ring-functionalized mesoporous silica as effective and selective adsorbents for heavy metal ions. RSC Adv 3(48):25686–25689CrossRefGoogle Scholar
  30. 30.
    Hong YJ, Kang YC (2017) Selenium-impregnated hollow carbon microspheres as efficient cathode materials for lithium–selenium batteries. Carbon 111:198–206CrossRefGoogle Scholar
  31. 31.
    Wang CW, Wang Y, Graser J, Zhao R, Gao F, ÓConnell MJ (2013) Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis. ACS Nano 7(12):11156–11165CrossRefGoogle Scholar
  32. 32.
    Guo DY, Chen XA, Fang ZP, He YF, Zheng C, Yang Z, Yang KQ, Chen Y, Huang SM (2015) Hydrangea-like multi-scale carbon hollow submicron spheres with hierarchical pores for high performance supercapacitor electrodes. Electrochim Acta 176:207–214CrossRefGoogle Scholar
  33. 33.
    Otowa T, Tanibata R, Itoh M (1993) Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas Sep Purif 7(4):241–245CrossRefGoogle Scholar
  34. 34.
    Castelló DL, Calo JM, Amorós DC, Solano AL (2007) Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 45(13):2529–2536CrossRefGoogle Scholar
  35. 35.
    Piñero ER, Azaïs P, Cacciaguerra T, Amorós DC, Solano AL, Béguin F (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43(4):786–795CrossRefGoogle Scholar
  36. 36.
    Qiao WM, Yoon SH, Mochida I (2006) KOH activation of needle coke to develop activated carbons for high-performance EDLC. Energy Fuels 20(4):1680–1684CrossRefGoogle Scholar
  37. 37.
    Wang JC, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22(45):23710–23725CrossRefGoogle Scholar
  38. 38.
    Han JP, Xu GY, Ding B, Pan J, Dou H, MacFarlane DR (2014) Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J Mater Chem A 2(15):5352–5357CrossRefGoogle Scholar
  39. 39.
    Kim TY, Jung GJ, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7(8):6899–6905CrossRefGoogle Scholar
  40. 40.
    Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem-A Eur J 15(16):4195–4203CrossRefGoogle Scholar
  41. 41.
    Titirici MM, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5(5):6796–6822CrossRefGoogle Scholar
  42. 42.
    Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47(9):2281–2289CrossRefGoogle Scholar
  43. 43.
    Aida TM, Sato Y, Watanabe M, Tajima K, Nonaka T, Hattori H, Arai K (2007) Dehydration of d-glucose in high temperature water at pressures up to 80 MPa. J Supercrit Fluids 40(3):381–388CrossRefGoogle Scholar
  44. 44.
    Li ZJ, Zhang WY, Li YC, Wang HY, Qin Z (2018) Activated pyrene decorated graphene with enhanced performance for electrochemical energy storage. Chem Eng J 334:845–854CrossRefGoogle Scholar
  45. 45.
    Zhao X, Zhang LL, Murali S, Stoller MD, Zhang QH, Zhu YW, Ruoff RS (2012) Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6(6):5404–5412CrossRefGoogle Scholar
  46. 46.
    Zhang LL, Zhao X, Stoller MD, Zhu YW, Ji HX, Murali S, Wu YP, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806–1812CrossRefGoogle Scholar
  47. 47.
    Pang J, Zhang WF, Zhang H, Zhang JL, Zhang HM, Cao GP, Han MF, Yang YS (2018) Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors. Carbon 132:280–293CrossRefGoogle Scholar
  48. 48.
    Etacheri V, Wang CW, O’Connell MJ, Chan CK, Pol VG (2015) Porous carbon sphere anodes for enhanced lithium-ion storage. J Mater Chem A 3(18):9861–9868CrossRefGoogle Scholar
  49. 49.
    Yang MM, Cheng B, Song HH, Chen XH (2010) Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochim Acta 55(23):7021–7027CrossRefGoogle Scholar
  50. 50.
    Saha DPD, Li YC, Bi ZH, Chen JH, Keum JK, Hensley DK, Grappe HA, Meyer HM, Dai S, Paranthaman MP, Naskar AK (2014) Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30(3):900–910CrossRefGoogle Scholar
  51. 51.
    Cai TW, Zhou M, Ren DY, Han GS, Guan SY (2013) Highly ordered mesoporous phenol–formaldehyde carbon as supercapacitor electrode material. J Power Sour 231(6):197–202CrossRefGoogle Scholar
  52. 52.
    Wei K, Kim KO, Song KH, Kang CY, Lee JS, Gopiraman M, Kim IS (2017) Nitrogen-and oxygen-containing porous ultrafine carbon nanofiber: a highly flexible electrode material for supercapacitor. J Mater Sci Technol 33(5):424–431CrossRefGoogle Scholar
  53. 53.
    Wang CH, Wen WC, Hsu HC, Yao BY (2016) High-capacitance koh-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor. Adv Powder Technol 27(4):1387–1395CrossRefGoogle Scholar
  54. 54.
    Lee EJ, Lee YJ, Kim JK, Lee M, Yi J, Yoon JR, Song IK (2016) Preparation and characterization of nitrogen-enriched carbon aerogel as a supercapacitor electrode material. J Nanosci Nanotechnol 16(10):10413–10419CrossRefGoogle Scholar
  55. 55.
    Guo CX, Li CM (2011) A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy Environ Sci 4(11):4504–4507CrossRefGoogle Scholar
  56. 56.
    Zhou JH, He JP, Zhang CX, Wang T, Sun D, Di ZD, Dj Wang (2010) Mesoporous carbon spheres with uniformly penetrating channels and their use as a supercapacitor electrode material. Mater Charact 61(1):31–38CrossRefGoogle Scholar
  57. 57.
    Ma XM, Liu MX, Gan LH, Zhao YH, Chen LW (2013) Synthesis of micro- and mesoporous carbon spheres for supercapacitor electrode. J Solid State Electrochem 17(8):2293–2301CrossRefGoogle Scholar
  58. 58.
    Chen AB, Yu YF, Xing TT, Wang RJ, Zhang Y, Li Q (2015) Synthesis of graphitic carbon spheres for enhanced supercapacitor performance. J Mater Sci 50(16):5578–5582. CrossRefGoogle Scholar
  59. 59.
    Shen KW, Ran F, Zhang XX, Liu C, Wang NJ, Niu XQ, Liu Y, Zhang DJ, Kong LB, Kang L, Chen SW (2015) Supercapacitor electrodes based on nano-polyaniline deposited on hollow carbon spheres derived from cross-linked co-polymers. Synth Met 209(1):369–376CrossRefGoogle Scholar
  60. 60.
    Yang W, Feng Y, Xiao D, Yuan H (2015) Fabrication of microporous and mesoporous carbon spheres for high-performance supercapacitor electrode materials. Int J Energy Res 39(6):805–811CrossRefGoogle Scholar
  61. 61.
    Kim SK, Jung E, Goodman MD, Schweizer KS, Tatsuda N, Yano K, Braun PV (2015) Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes. ACS Appl Mater Interfaces 7(17):9128–9133CrossRefGoogle Scholar
  62. 62.
    Liu J, Wang XY, Gao J, Zhang YW, Lu Q, Liu M (2016) Hollow porous carbon spheres with hierarchical nanoarchitecture for application of the high performance supercapacitors. Electrochim Acta 211:183–192CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.Shanghai Innovation Institute for materialsShanghaiChina

Personalised recommendations