Advertisement

Journal of Materials Science

, Volume 53, Issue 19, pp 13733–13741 | Cite as

Mechanochemical synthesis of cerium(IV)-phosphonates

  • Manuel Wilke
  • Irina Akhmetova
  • Klaus Rademann
  • Franziska EmmerlingEmail author
Mechanochemical Synthesis

Abstract

The syntheses and crystal structures of two cerium(IV) phosphonates are presented. Cerium(IV) bis(phenylphosphonate) Ce(O3PC6H5)2 1 can be formed from precipitation and mechanochemical reaction, whereas cerium(IV) bis(carboxymethylphosphonate) monohydrate Ce(O3PCH2COOH)2 · H2O 2 is only accessible via ball milling. All reactions proceed very fast and are completed within a short time span. In situ measurements for the syntheses of 1 show that the product occurs within seconds or a few minutes, respectively. The structures were solved from powder X-ray diffraction data.

Notes

Acknowledgements

The authors are grateful for the funding received from the DFG program “Crystalline non-equilibrium compounds” (Grant No. Em198/3-2). Manuel Wilke has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 701647.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_2507_MOESM1_ESM.docx (772 kb)
Supplementary material 1 (DOCX 772 kb)

References

  1. 1.
    Chen Z, Zhou Y, Weng L, Yuan C, Zhao D (2007) A zeolite-like zinc phosphonocarboxylate framework and its transformation into two- and three-dimensional structures. Chem Asian J 2:1549–1554CrossRefGoogle Scholar
  2. 2.
    Miller SR, Pearce GM, Wright PA, Bonino F, Chavan S, Bordiga S, Margiolaki I, Guillou N, Feerey G, Bourrelly S, Llewellyn PL (2008) Structural transformations and adsorption of fuel-related gases of a structurally responsive nickel phosphonate metal-organic framework, Ni-STA-12. J Am Chem Soc 130(47):15967–15981CrossRefGoogle Scholar
  3. 3.
    Dutta A, Patra AK, Bhaumik A (2012) Porous organic-inorganic hybrid nickel phosphonate: adsorption and catalytic applications. Microporous Mesoporous Mater 155:208–214CrossRefGoogle Scholar
  4. 4.
    Liu YP, Guo SX, Bond AM, Zhang J, Du SW (2013) Cobalt(II) phosphonate coordination polymers: synthesis, characterization and application as oxygen evolution electrocatalysts in aqueous media and water-saturated hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Electrochim Acta 101:201–208CrossRefGoogle Scholar
  5. 5.
    Sen R, Saha D, Mal D, Brandao P, Rogez G, Lin Z (2013) Synthesis, structural aspects and catalytic performance of a tetrahedral cobalt phosphonate framework. Eur J Inorg Chem 28:5020–5026Google Scholar
  6. 6.
    Alberti G, Casciola M, Palombari R, Peraio A (1992) Protonic conductivity of layered zirconium phosphonates containing-SO3H groups. II. AC conductivity of zirconium alkyl sulfophenyl phosphonates in the range 100–200°C, in the presence or absence of water-vapor. Solid State Ionics 58(3–4):339–344CrossRefGoogle Scholar
  7. 7.
    Taylor JM, Mah RK, Moudrakovski IL, Ratcliffe CI, Vaidhyanathan R, Shimizu GKH (2010) Facile proton conduction via ordered water molecules in a phosphonate metal-organic framework. J Am Chem Soc 132(40):14055–14057CrossRefGoogle Scholar
  8. 8.
    Thakkar R, Chudasama U (2010) Synthesis, characterization and proton transport properties of mixed metal phosphonate-zirconium titanium hydroxy ethylidene diphosphonate. J Iran Chem Soc 7(1):202–209CrossRefGoogle Scholar
  9. 9.
    Bazaga-Garcia M, Papadaki M, Colodrero RMP, Olivera-Pastor P, Losilla ER, Nieto-Ortega B, Aranda MAG, Choquesillo-Lazarte D, Cabeza A, Demadis KD (2015) Tuning proton conductivity in alkali metal phosphonocarboxylates by cation size-induced and water-facilitated proton transfer pathways. Chem Mater 27(2):424–435CrossRefGoogle Scholar
  10. 10.
    Cai ZS, Bao SS, Wang XZ, Hu Z, Zheng LM (2016) Multiple-step humidity-induced single-crystal to single-crystal transformations of a cobalt phosphonate: structural and proton conductivity studies. Inorg Chem 55(7):3706–3712CrossRefGoogle Scholar
  11. 11.
    Demadis KD, Stavgianoudaki N (2012) Chapter 14 structural diversity in metal phosphonate frameworks: impact on applications. In: Metal phosphonate chemistry: from synthesis to applications. The Royal Society of Chemistry, pp 438–492Google Scholar
  12. 12.
    Goura J, Chandrasekhar V (2015) Molecular metal phosphonates. Chem Rev 115(14):6854–6965CrossRefGoogle Scholar
  13. 13.
    Zheng Y-Z, Zhou G-J, Zheng Z, Winpenny REP (2014) Molecule-based magnetic coolers. Chem Soc Rev 43(5):1462–1475CrossRefGoogle Scholar
  14. 14.
    Ma KR, Kan YH, Wang XL, Cao L (2016) Three metal(II) diphosphonates with d(10) electron configuration: structural, fluorescent and electrochemical studies. J Cluster Sci 27(1):213–226CrossRefGoogle Scholar
  15. 15.
    Zhu Y-P, Ma T-Y, Liu Y-L, Ren T-Z, Yuan Z-Y (2014) Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorg Chem Front 1(5):360–383CrossRefGoogle Scholar
  16. 16.
    Bauer S, Bein T, Stock N (2005) High-throughput investigation and characterization of cobalt carboxy phosphonates. Inorg Chem 44(16):5882–5889CrossRefGoogle Scholar
  17. 17.
    Bauer S, Stock N (2007) Implementation of a temperature-gradient reactor system for high-throughput investigation of phosphonate-based inorganic-organic hybrid compounds. Angew Chem Int Ed 46(36):6857–6860CrossRefGoogle Scholar
  18. 18.
    Schilling LH, Stock N (2014) High-throughput ultrasonic synthesis and in situ crystallisation investigation of metal phosphonocarboxylates. Dalton Trans 43(2):414–422CrossRefGoogle Scholar
  19. 19.
    Wilke M, Bach S, Gorelik Tatiana E, Kolb U, Tremel W, Emmerling F (2017) Divalent in situ characterization and structure solution. Zeitschrift für Kristallographie Cryst Mater 232(1–3):209–222Google Scholar
  20. 20.
    Batzdorf L, Fischer F, Wilke M, Wenzel KJ, Emmerling F (2015) Direct in situ investigation of milling reactions using combined X-ray diffraction and raman spectroscopy. Angew Chem Int Ed 54(6):1799–1802CrossRefGoogle Scholar
  21. 21.
    Wilke M, Batzdorf L, Fischer F, Rademann K, Emmerling F (2016) Cadmium phenylphosphonates: preparation, characterisation and in situ investigation. Rsc Adv 6(42):36011–36019CrossRefGoogle Scholar
  22. 22.
    Wilke M, Buzanich AG, Reinholz U, Rademann K, Emmerling F (2016) The structure and in situ synthesis investigation of isomorphic mononuclear molecular metal phenylphosphonates. Dalton Trans 45(23):9460–9467CrossRefGoogle Scholar
  23. 23.
    Halasz I, Puskaric A, Kimber SAJ, Beldon PJ, Belenguer AM, Adams F, Honkimaki V, Dinnebier RE, Patel B, Jones W, Strukil V, Friščić T (2013) Real-time in situ powder X-ray diffraction monitoring of mechanochemical synthesis of pharmaceutical cocrystals. Angew Chem Int Ed 52(44):11538–11541CrossRefGoogle Scholar
  24. 24.
    Halasz I, Puskaric A, Kimber SAJ, Beldon PJ, Belenguer AM, Adams F, Honkimaki V, Dinnebier RE, Patel B, Jones W, Strukil V, Friščić T (2013) Real-time in situ powder X-ray diffraction monitoring of mechanochemical synthesis of pharmaceutical cocrystals. Angew Chem 125(45):11752–11755CrossRefGoogle Scholar
  25. 25.
    Halasz I, Kimber SAJ, Beldon PJ, Belenguer AM, Adams F, Honkimaki V, Nightingale RC, Dinnebier RE, Friščić T (2013) In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction. Nat Protoc 8:1718–1729CrossRefGoogle Scholar
  26. 26.
    Gracin D, Strukil V, Friščić T, Halasz I, Uzarevic K (2014) Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy. Angew Chem Int Ed 53(24):6193–6197CrossRefGoogle Scholar
  27. 27.
    Gracin D, Strukil V, Friščić T, Halasz I, Uzarevic K (2014) Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy. Angew Chem 126(24):6307–6311CrossRefGoogle Scholar
  28. 28.
    Alberti G, Costantino U, Allulli S, Tomassini N (1978) Crystalline ZR(R-PO3)2 and ZR(R-OPO3)2 compounds (R = organic radical): a new class of materials having layered structure of the zirconium-phosphate type. J Inorg Nucl Chem 40(6):1113–1117CrossRefGoogle Scholar
  29. 29.
    Clearfield A (1996) Recent advances in metal phosphonate chemistry. Curr Opin Solid State Mater Sci 1(2):268–278CrossRefGoogle Scholar
  30. 30.
    Clearfield A (2008) Unconventional metal organic frameworks: porous cross-linked phosphonates. Dalton Trans 44:6089–6102CrossRefGoogle Scholar
  31. 31.
    Pica M, Donnadio A, D’Amato R, Capitani D, Taddei M, Casciola M (2014) Layered metal(IV) phosphonates with rigid pendant groups: new synthetic approaches to nanosized zirconium phosphate phenylphosphonates. Inorg Chem 53(4):2222–2229CrossRefGoogle Scholar
  32. 32.
    Juan DW, Good JJ, DiStefano VH, Albrecht-Schmitt TE (2011) Self-assembly of hexanuclear clusters of 4f and 5f elements with cation specificity. Eur J Inorg Chem 9:1374–1377Google Scholar
  33. 33.
    Diwu JA, Wang SA, Liao ZL, Burns PC, Albrecht-Schmitt TE (2010) Cerium(IV), neptunium(IV), and plutonium(IV) 1,2-phenylenediphosphonates: correlations and differences between early transuranium elements and their proposed surrogates. Inorg Chem 49(21):10074–10080CrossRefGoogle Scholar
  34. 34.
    Costantino F, Gentili PL, Audebrand N (2009) A new dual luminescent pillared cerium(IV)sulfate-diphosphonate. Inorg Chem Commun 12(5):406–408CrossRefGoogle Scholar
  35. 35.
    Costantino F, Ienco A, Gentili PL, Presciutti F (2010) Synthesis, X-ray powder structure, and photophysical properties of three new ce(III) sulfate-diaminotetraphosphonate-based coordination polymers. Cryst Growth Des 10(11):4831–4838CrossRefGoogle Scholar
  36. 36.
    David WIF, Shankland K, van de Streek J, Pidcock E, Motherwell WDS, Cole JC (2006) DASH: a program for crystal structure determination from powder diffraction data. J Appl Crystallogr 39:910–915CrossRefGoogle Scholar
  37. 37.
    Paris O, Li CH, Siegel S, Weseloh G, Emmerling F, Riesemeier H, Erko A, Fratzl P (2007) A new experimental station for simultaneous X-ray microbeam scanning for small- and wide-angle scattering and fluorescence at BESSY II. J Appl Crystallogr 40:S466–S470CrossRefGoogle Scholar
  38. 38.
    Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14(4–6):235–248CrossRefGoogle Scholar
  39. 39.
    Wilke M, Kabelitz A, Gorelik TE, Buzanich AG, Reinholz U, Kolb U, Rademann K, Emmerling F (2016) The crystallisation of copper(ii) phenylphosphonates. Dalton Trans 45(43):17453–17463CrossRefGoogle Scholar
  40. 40.
    Langford JI, Louer D (1996) Powder diffraction. Rep Prog Phys 59:131–234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Swiss Light Source, Material Science BeamlinePaul Scherrer InstituteVilligen PSISwitzerland
  2. 2.BAM Federal Institute for Materials Research and TestingBerlinGermany
  3. 3.Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations