Advertisement

Journal of Materials Science

, Volume 53, Issue 17, pp 12056–12064 | Cite as

Facile synthesis of thermo-responsive nanogels less than 50 nm in diameter via soap- and heat-free precipitation polymerization

  • Jinguang Wei
  • Huilong Yu
  • Hongzhi LiuEmail author
  • Chungui DuEmail author
  • Zhongxi Zhou
  • Qiuli Huang
  • Xiaoling Yao
Chemical routes to materials

Abstract

Owing to their highly desirable properties that combine the properties of both hydrogels and nanomaterials, smart nanogels own great potentials as active nanocarriers in medical applications. In this paper, thermo-responsive nanogels with uniform sizes less than 50 nm in diameter were synthesized using potassium persulfate (KPS)/N,N,N′,N′-tetramethylethylenediamine (TMEDA) as a initiator system via a facile surfactant-free precipitation radical polymerization of N-isopropylacrylamide (NIPAM) at room temperature. Both transmission electron microscopy and dynamic light scattering were used to characterize the morphologies and diameters of the PNIPAM nanogels. All nanogels with spherical shape exhibited a narrow size distribution, and the finest nanogels were 43 nm in diameter on average. The very fine and highly pure nanogels would be more promising for drug delivery carriers than the bulk gels or microgels.

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 31370568), Opening Project from CAS Key Laboratory of Engineering Plastics, Institute of Chemistry (China), Public Welfare Projects of Zhejiang Province (No. 2017C33113), and Scientific Research Foundation of Zhejiang Agriculture and Forestry University (No. 2013FR088).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_2495_MOESM1_ESM.pdf (612 kb)
Supplementary material 1 (PDF 612 kb)

References

  1. 1.
    Kim H, Kim B, Lee C, Ryu JL, Hong SJ, Kim J, Ha EJ, Paik HJ (2016) Redox-responsive biodegradable nanogels for photodynamic therapy using Chlorin e6. J Mater Sci 51(18):8442–8451.  https://doi.org/10.1007/s10853-016-0104-4 CrossRefGoogle Scholar
  2. 2.
    Yallapu MM, Jaggi M, Chauhan SC (2011) Design and engineering of nanogels for cancer treatment. Drug Discov Today 16(9):457–463CrossRefGoogle Scholar
  3. 3.
    Yu X, Lei DY, Amin F, Hartmann R, Acuna GP, Guerrero-Martínez A, Maier SA, Tinnefeld P, Carregal-Romero S, Parak WJ (2013) Distance control in-between plasmonic nanoparticles via biological and polymeric spacers. Nano Today 8(5):480–493CrossRefGoogle Scholar
  4. 4.
    Hanabusa K, Suzuki M (2016) Physical gelation by low-molecular-weight compounds and development of gelators. Bull Chem Soc Jpn 89(2):174–182CrossRefGoogle Scholar
  5. 5.
    Nakagawa H, Fujiki M, Sato T, Suzuki M, Hanabusa K, Nakagawa H, Fujiki M, Sato T, Suzuki M, Hanabusa K (2017) Characteristics of gelation by amides based on trans-1,2-diaminocyclohexane: the importance of different substituents. Bull Chem Soc Jpn 90(3):312–321CrossRefGoogle Scholar
  6. 6.
    Huang CT, Shrestha LK, Ariga K, Hsu S (2017) A graphene–polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells. J Mater Chem B 5(44):8854–8864CrossRefGoogle Scholar
  7. 7.
    Okesola BO, Smith DK (2016) Applying low-molecular weight supramolecular gelators in an environmental setting - self-assembled gels as smart materials for pollutant removal. Chem Soc Rev 45(15):4226–4251CrossRefGoogle Scholar
  8. 8.
    Khandare J, Calderón M, Dagia NM, Haag R (2012) Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem Soc Rev 41(27):2824–2848CrossRefGoogle Scholar
  9. 9.
    Giulbudagian M, Asadian-Birjand M, Steinhilber D, Achazi K, Molina M, Calderon M (2014) Fabrication of thermoresponsive nanogels by thermo-nanoprecipitation and in situ encapsulation of bioactives. Polym Chem 5(24):6909–6913CrossRefGoogle Scholar
  10. 10.
    Ferrer MCC, Dastgheyb S, Hickok NJ, Eckmann DM, Composto RJ (2014) Designing nanogel carriers for antibacterial applications. Acta Biomater 10(5):2105–2111CrossRefGoogle Scholar
  11. 11.
    Liu C, Yu J, Jiang G, Liu X, Li Z, Gao G, Liu F (2013) Thermosensitive poly (N -isopropylacrylamide) hydrophobic associated hydrogels: optical, swelling/deswelling, and mechanical properties. J Mater Sci 48(2):774–784.  https://doi.org/10.1007/s10853-012-6794-3 CrossRefGoogle Scholar
  12. 12.
    Alam A, Meng Q, Shi G, Arabi S, Ma J, Zhao N, Kuan H-C (2016) Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels. Compos Sci Technol 127:119–126CrossRefGoogle Scholar
  13. 13.
    Lv S-W, Liu Y, Xie M, Wang J, Yan X-W, Li Z, Dong W-G, Huang W-H (2016) Near-infrared light-responsive hydrogel for specific recognition and photothermal site-release of circulating tumor cells. ACS Nano 10(6):6201–6210CrossRefGoogle Scholar
  14. 14.
    Pairatwachapun S, Paradee N, Sirivat A (2016) Controlled release of acetylsalicylic acid from polythiophene/carrageenan hydrogel via electrical stimulation. Carbohyd Polym 137:214–221CrossRefGoogle Scholar
  15. 15.
    Wen X, Qiao X, Han X, Niu L, Huo L, Bai G (2016) Multifunctional magnetic branched polyethylenimine nanogels with in situ generated Fe3O4 and their applications as dye adsorbent and catalyst support. J Mater Sci 51(6):3170–3181.  https://doi.org/10.1007/s10853-015-9627-3 CrossRefGoogle Scholar
  16. 16.
    Molina M, Asadian-Birjand M, Balach J, Bergueiro J, Miceli E, Calderón M (2015) Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 44(17):6161–6186CrossRefGoogle Scholar
  17. 17.
    Scarpa JS, Mueller DD, Klotz IM (2002) Slow hydrogen–deuterium exchange in a non-.alpha.-helical polyamide. J Am Chem Soc 89(24):6024–6030CrossRefGoogle Scholar
  18. 18.
    Pelton RH, Chibante P (1986) Preparation of aqueous latices with N -isopropylacrylamide. Colloids Surf 20(3):247–256CrossRefGoogle Scholar
  19. 19.
    Brijitta J, Tata B, Kaliyappan T (2009) Phase behavior of poly (N-isopropylacrylamide) nanogel dispersions: temperature dependent particle size and interactions. J Nanosci Nanotechnol 9(9):5323–5328CrossRefGoogle Scholar
  20. 20.
    Gao J, Frisken BJ (2003) Cross-linker-free N-isopropylacrylamide gel nanospheres. Langmuir 19(13):5212–5216CrossRefGoogle Scholar
  21. 21.
    Gao J, Frisken BJ (2003) Influence of reaction conditions on the synthesis of self-cross-linked N-isopropylacrylamide microgels. Langmuir 19(13):5217–5222CrossRefGoogle Scholar
  22. 22.
    Kuckling D, Vo CD, Adler H-J, Völkel A, Cölfen H (2006) Preparation and characterization of photo-cross-linked thermosensitive PNIPAAm nanogels. Macromolecules 39(4):1585–1591CrossRefGoogle Scholar
  23. 23.
    Vo CD, Kuckling D, Adler H-J, Schönhoff M (2002) Preparation of thermosensitive nanogels by photo-cross-linking. Colloid Polym Sci 280(5):400–409CrossRefGoogle Scholar
  24. 24.
    Kazakov S, Kaholek M, Kudasheva D, Teraoka I, Cowman MK, Levon K (2003) Poly (N-isopropylacrylamide-co-1-vinylimidazole) hydrogel nanoparticles prepared and hydrophobically modified in liposome reactors: atomic force microscopy and dynamic light scattering study. Langmuir 19(19):8086–8093CrossRefGoogle Scholar
  25. 25.
    Kazakov S, Kaholek M, Teraoka I, Levon K (2002) UV-induced gelation on nanometer scale using liposome reactor. Macromolecules 35(5):1911–1920CrossRefGoogle Scholar
  26. 26.
    Hu X, Tong Z, Lyon LA (2011) Control of poly (N-isopropylacrylamide) microgel network structure by precipitation polymerization near the lower critical solution temperature. Langmuir 27(7):4142–4148CrossRefGoogle Scholar
  27. 27.
    Wei J, Chen Y, Liu H, Du C, Yu H, Ru J, Zhou Z (2016) Effect of surface charge content in the TEMPO-oxidized cellulose nanofibers on morphologies and properties of poly (N-isopropylacrylamide)-based composite hydrogels. Ind Crops Prod 92:227–235CrossRefGoogle Scholar
  28. 28.
    Wei J, Chen Y, Liu H, Du C, Yu H, Zhou Z (2016) Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels. Carbohyd Polym 147:201–207CrossRefGoogle Scholar
  29. 29.
    Shirangi M, Sastre TJ, Sellergren B, Hennink WE, Somsen GW, van Nostrum CF (2015) Methyleneation of peptides by N, N, N, N-tetramethylethylenediamine (TEMED) under conditions used for free radical polymerization: a mechanistic study. Bioconjug Chem 26(1):90–100CrossRefGoogle Scholar
  30. 30.
    Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Coll Interf Sci 85(1):1–33CrossRefGoogle Scholar
  31. 31.
    Kawaguchi H (2000) Functional polymer microspheres. Prog Polym Sci 25(8):1171–1210CrossRefGoogle Scholar
  32. 32.
    Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70(3):1214–1218CrossRefGoogle Scholar
  33. 33.
    Maya S, Sarmento B, Nair A, Rejinold NS, Nair SV, Jayakumar R (2013) Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr Pharm Des 19(41):7203–7218CrossRefGoogle Scholar
  34. 34.
    Bardajee GR, Hooshyar Z, Farsi M, Mobini A, Sang G (2017) Synthesis of a novel thermo/pH sensitive nanogel based on salep modified graphene oxide for drug release. Mater Sci Eng C Mater Biol Appl 72:558–565CrossRefGoogle Scholar
  35. 35.
    Jones CD, Lyon LA (2000) Synthesis and characterization of multiresponsive core–shell microgels. Macromolecules 33(22):749–753CrossRefGoogle Scholar
  36. 36.
    Vo CD, Kuckling D, Adler HJP, Schönhoff M (2002) Preparation of thermosensitive nanogels by photo-cross-linking. Colloid Polym Sci 280(5):400–409CrossRefGoogle Scholar
  37. 37.
    Morimoto N, Ohki T, Kurita K, Akiyoshi K (2008) Thermo-responsive hydrogels with nanodomains: rapid shrinking of a nanogel-crosslinking hydrogel of poly(N-isopropyl acrylamide). Die Unterrichtspraxis/teaching German 29(8):672–676Google Scholar
  38. 38.
    Schoff CK, Morfesis A (2007) Zeta potential. Jct Coatingstech 4(5):64–64Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of EngineeringZhejiang Agriculture and Forestry UniversityLin’an, HangzhouPeople’s Republic of China
  2. 2.Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency UtilizationHangzhouPeople’s Republic of China

Personalised recommendations