Journal of Materials Science

, Volume 53, Issue 17, pp 12628–12640 | Cite as

Refractive index and polarizability of polystyrene under shock compression

  • Xuping Zhang
  • Guiji WangEmail author
  • Binqiang Luo
  • Fuli Tan
  • Simon N. Bland
  • Jianheng ZhaoEmail author
  • Chengwei Sun
  • Cangli Liu


The refractive index, polarizability and thermodynamic response of polystyrene under shock compression were investigated through experiments and theoretical analysis, and a relationship between the refractive index and the density, pressure and temperature of the polystyrene was obtained. Above a pressure of 20 GPa, an obvious inflexion was observed in how the refractive index of the polystyrene varied with the thermodynamic variables; in particular, it was found to depend strongly on the temperature (as obtained using a semiempirical complete equation of state). Relating the measured refractive index to the polarizability indicates that the polarizability decreased from 1.28 × 10−23 cm3 at ambient conditions, to 0.98 × 10−23 cm3 at pressure of 33 GPa, indicating that the lowest direct band gap \( E_{t} \) of polystyrene becomes < 2 eV, similar to that of many semiconductor materials.



The authors wish to thank Mr. Gang Wu, Chao Xu, Rongjie Shui, Xiao Ma, Shunyi Deng and Ran Qiao at IFP for their dedications to experimental operations on CQ4 and Abbe refractometer. This work was supported by the National Natural Science Foundation of China (Contract Nos. 11327803, 11502252), the project of Youth Innovation of Science and Technology of Sichuan Province (Contract No. 2016TD0022).

Compliance with ethical standards

Conflict of interest

The authors declare that the contents have no conflict of interest toward any individual or organization.


  1. 1.
    Kraus D et al (2017) Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat Astron 1:606–611CrossRefGoogle Scholar
  2. 2.
    Nellis WJ, Hamilton DC, Holmes NC, Radousky HB, Ree FH, Mitchell AC, Nicol M (1988) The nature of the interior of Uranus based on studies of planetary ices at high dynamic pressure. Science 240(4853):779–781CrossRefGoogle Scholar
  3. 3.
    Nellis WJ (2017) Dynamic compression: what it is, making metallic H and magnetic fields of Uranus and Neptune. High Press Res 37(2):1–18CrossRefGoogle Scholar
  4. 4.
    Nellis WJ (2006) Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Rep Prog Phys 69(5):1479–1580CrossRefGoogle Scholar
  5. 5.
    Chantawansri TL, Sirk TW, Byrd EFC, Andzelm JW, Rice BM (2012) Shock Hugoniot calculations of polymers using quantum mechanics and molecular dynamics. J Chem Phys 137(20):204901CrossRefGoogle Scholar
  6. 6.
    Takamatsu K, Ozaki N, Tanaka KA, Ono T, Nagai K, Nakai M (2003) Equation-of-state measurements of polyimide at pressures up to 5.8 TPa using low-density foam with laser-driven shock waves. Phys Rev E 67(2):115–127Google Scholar
  7. 7.
    Cauble R et al (1997) Absolute measurements of the equations of state of low-Z materials in the multi-Mbar regime using laser-driven shocks. Phys Plasmas 4(5):1857–1861CrossRefGoogle Scholar
  8. 8.
    Dias RP, Silvera IF (2017) Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355(6326):715CrossRefGoogle Scholar
  9. 9.
    Knudson MD, Desjarlais MP, Becker A, Lemke RW, Cochrane KR, Savage ME, Bliss DE, Mattsson TR, Redmer R (2015) Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348(6242):1455–1460CrossRefGoogle Scholar
  10. 10.
    Collins GW, Celliers PM, Da Silva LB, Cauble R, Gold DM, Foord ME, Holmes NC, Hamme BA, Wallace RJ, Ng A (2001) Temperature measurements of shock compressed liquid deuterium up to 230 GPa. Phys Rev Lett 87(16):165504CrossRefGoogle Scholar
  11. 11.
    Koenig M, Philippe F, Benuzzi Mounaix A (2003) Optical properties of highly compressed polystyrene using laser-driven shock waves. Phys Plasmas 10(7):3026–3029CrossRefGoogle Scholar
  12. 12.
    Ozaki N et al (2009) Shock Hugoniot and temperature data for polystyrene obtained with quartz standard. Phys Plasmas 16(6):062702CrossRefGoogle Scholar
  13. 13.
    Barrios MA, Hicks DG, Boehly TR, Fratanduono DE, Eggert JH, Celliers PM, Collins GW, Meyerhofer DD (2010) High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves. Phys Plasmas 17(5):056307CrossRefGoogle Scholar
  14. 14.
    Wang C, He XT, Zhang P (2011) Thermophysical properties for shock compressed polystyrene. Phys Plasmas 18(8):082707CrossRefGoogle Scholar
  15. 15.
    Hauver GE (1965) Shock induced polarization in plastics. II. experimental study of plexiglas and polystyrene. J Appl Phys 36(7):2113–2118CrossRefGoogle Scholar
  16. 16.
    Carter WJ, Marsh SP(1995) Hugoniot equation of state of polymers, Los Alamos National Laboratory report No. LA- 13006- MSGoogle Scholar
  17. 17.
    Bushman AV, Lomonosov IV, Fortov VE, Khishchenko KV, Zhernokletov MV and Sutulov YN (1996) Experimental investigation of phenylene and polystyrene under conditions of shock loading and isentropic expansion. Equations of state of plastics at high energy densities, Zh Eksp Teor Fiz. (Sov Phys JETP) 82(5):895–899Google Scholar
  18. 18.
    Ree FH (1979) Systematics of high-pressure and high-temperature behavior of hydrocarbons. J Chem Phys 10(19):974–983CrossRefGoogle Scholar
  19. 19.
    Nellis WJ, Ree FH, Trainor RJ, Mitchell AC, Boslough MB (1984) Equation of state and optical luminosity of benzene, polybutene, and polyethylene shocked to 210 GPa (2.1 Mbar). J Chem Phys 80(6):2789–2799CrossRefGoogle Scholar
  20. 20.
    Mattsson TR, Lane JMD, Cochrane KR, Desjarlais MP, Thompson AP, Pierce F, Grest GS (2010) First-principles and classical molecular dynamics simulation of shocked polymers. Phys Rev B 81(5):054103CrossRefGoogle Scholar
  21. 21.
    Root S, Haill TA, Lane JMD, Thompson AP, Grest GS, Schroen DG, Mattsson TR (2013) Shock compression of hydrocarbon foam to 200 GPa: experiments, atomistic simulations, and mesoscale hydrodynamic modeling. J Appl Phys 114(10):103502CrossRefGoogle Scholar
  22. 22.
    Gregor MC, Boni R, Sorce A, Kendrick J, McCoy CA, Polsin DN, Boehly TR, Celliers PM, Collins GW, Fratanduono DE, Eggert JH, Millot M (2016) Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials. Rev Sci Instrum 87(11):114903CrossRefGoogle Scholar
  23. 23.
    Radousky HB, Mitchell AC (1989) A fast UV/visible pyrometer for shock temperature measurements to 20 000 K. Rev Sci Instrum 60(12):3707–3710CrossRefGoogle Scholar
  24. 24.
    Wang GJ et al (2013) A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading. Rev Sci Instrum 84(1):015117CrossRefGoogle Scholar
  25. 25.
    Zhang XP et al (2014) High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments. Rev Sci Instrum 85(5):055110CrossRefGoogle Scholar
  26. 26.
    Zhang XP et al (2018) Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate. J Alloy Compd 731:569–573CrossRefGoogle Scholar
  27. 27.
    Weng JD, Tan H, Wang X, Ma Y, Hu SL, Wang XS (2006) Optical-fiber interferometer for velocity measurements with picosecond resolution. Appl Phys Lett 89(11):111101CrossRefGoogle Scholar
  28. 28.
    Kormer SB (1968) Optical study of the characteristics of shock-compressed condensed dsielectrics. Sov Phys Usp 11:229–254CrossRefGoogle Scholar
  29. 29.
    Jenkins FA, White HE (1976) Fundamentals of optics. McGraw-Hill, New York, p 479Google Scholar
  30. 30.
    Kasarova SN, Sultanova NG, Ivanov CD, Nikolov ID (2007) Analysis of the dispersion of optical plastic materials. Opt Mater 29(11):1481–1490CrossRefGoogle Scholar
  31. 31.
    Caudill SE, Grubbs WT (2010) Interferometric measurements of refractive index dispersion in polymers over the visible and near-infrared spectral range. J Appl Polym Sci 100(1):65–72CrossRefGoogle Scholar
  32. 32.
    Marsh SP (1980) LASL shock Hugoniot data. University of California press, California, pp 57–463Google Scholar
  33. 33.
    Rigg PA, Knudson MD, Scharff RJ, Hixson RS (2014) Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility. J Appl Phys 116(3):033515CrossRefGoogle Scholar
  34. 34.
    LaLone BM, Fat’ yanov OV, Asay JR, Gupta YM (2008) Velocity correction and refractive index changes for [100] lithium fluoride optical windows under shock compression, recompression, and unloading. J Appl Phys 103(9):093505CrossRefGoogle Scholar
  35. 35.
    Meyers MA (1994) Dynamic behavior of materials. Wiley Interscience, San Diego, pp 126–151CrossRefGoogle Scholar
  36. 36.
    Boettger JC, Wallace DC (1997) Metastability and dynamics of the shock-induced phase transition in iron. Phys Rev B 55(5):2840–2849CrossRefGoogle Scholar
  37. 37.
    Khishchenko KV (1997) Temperature and heat capacity of polymethyl methacrylate behind the front of strong shock waves. High Temp 35:991–994Google Scholar
  38. 38.
    Wang Y, Li L (2000) Mean-field potential approach to thermodynamic properties of metal: Al as a prototype. Phys Rev B 62(1):196–202CrossRefGoogle Scholar
  39. 39.
    Kittel C (1978) Introduction to solid state physics. Wiley, Berkeley, p 107Google Scholar
  40. 40.
    Aihara JI, Fujiware K, Harada A et al (1996) The C–H bond dissociation energies of polycyclic aromatic hydrocarbons. J Mol Struct 366(3):219–226CrossRefGoogle Scholar
  41. 41.
    Hu SX, Collins LA, Goncharov VN, Kress JD, McCrory RL, Skupsky S (2016) First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications. Phys Plasmas 23(4):042704CrossRefGoogle Scholar
  42. 42.
    Setchell RE (1979) Index of refraction of shock compressed fused silica and sapphire. J Appl Phys 50(12):8186–8192CrossRefGoogle Scholar
  43. 43.
    Wemple SH, DiDomenico M Jr (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3(3):4875–4887Google Scholar
  44. 44.
    Herzfeld KF (1927) On atomic properties which make an element a metal. Phys Rev 29(5):701–7051CrossRefGoogle Scholar
  45. 45.
    Fratanduono DE et al (2011) Index of refraction of shock-released materials. J Appl Phys 110(8):083509CrossRefGoogle Scholar
  46. 46.
    Khishchenko KV, Fortov VE, Lomonosov IV (2000) Equations of state and physical-chemical transformations of shocked organic compounds. AIP Conf Proc 505:153–156CrossRefGoogle Scholar
  47. 47.
    Khishchenko KV, Fortov VE, Lomonosov IV (2002) Thermodynamic properties and physical–chemical transformations of polymer materials at high temperatures and pressures. Int J Thermophys 23(1):211–219CrossRefGoogle Scholar
  48. 48.
    Tang WH, Zhang RQ (2008) Introduction of Theory and Computation of Equations of State. Higher Education Press, Beijing, p 224Google Scholar
  49. 49.
    Utracki LA (2005) Pressure volume temperature dependencies of polystyrenes. Polymer 46(25):11548–11556CrossRefGoogle Scholar
  50. 50.
    Gaur U, Wunderlich B (1982) Heat capacity and other thermodynamic properties of linear macromolecules. J Phys Chem Ref Date 11(2):313CrossRefGoogle Scholar
  51. 51.
    Dudoladov IP, Rakitin VI, Sutulov YN, Telegin GS (1969) Shock compressibility of polystyrene of variable initial density. J Appl Mech Tech Phys 10(4):673–676CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Fluid PhysicsChina Academy of Engineering PhysicsMianyangChina
  2. 2.Blackett LaboratoryImperial College LondonLondonUK
  3. 3.China Academy of Engineering PhysicsMianyangChina

Personalised recommendations