Journal of Materials Science

, Volume 53, Issue 19, pp 13424–13431 | Cite as

Nanocrystalline non-equilibrium alloys of molybdenum with sodium

  • Beate BergkEmail author
  • Uwe Mühle
  • Bernd Kieback
Mechanochemical Synthesis


We present an experimental investigation of the immiscible alloy system Mo–Na with different Na concentrations between 1 and 8 at.%. These non-equilibrium alloys were created by mechanical alloying utilizing high-energy ball milling for up to 75 h. The different microstructures, particle-size distributions, and Na contents of the as-milled powder have been studied using transmission electron microscopy and scanning electron microscopy combined with energy-dispersive X-ray analysis. The maximum Na concentration incorporated into the Mo–Na alloy is identified to be 2 at.%. In addition, the thermal stability of the alloy was examined by analyzing the Na content after annealing at different temperatures and annealing times. While after milling with 1 at.% Na, the establishment of a solid solution was proved previously, the formation of a solid solution is limited to about 1.2 at.% if more Na is used. The residual incorporated Na is segregated at pores, defects, and grain boundaries.



The authors thank the Fraunhofer Institute for Ceramic Technologies and Systems, Materials Diagnostic (IKTS-MD), and the Dresden Center of Nanoanalysis (DCN) for the utilization of instruments for TEM preparation and characterization.


  1. 1.
    Ma E (2005) Alloys created between immiscible elements. Prog Mater Sci 50:413–509CrossRefGoogle Scholar
  2. 2.
    Aguilara C, Martiınez C, Naveac L (2009) Thermodynamic analysis of the change of solid solubility in a binary system processed mechanical alloying. J Alloys Compd 471:336–340CrossRefGoogle Scholar
  3. 3.
    Aguilara C, Castro F, Martínez C, Guzmán D, de las Cuevas F, Lozadal B, Vielma N (2012) Structural study of nanocrystalline solid solution of Cu–Mo obtained by mechanical alloying. Mater Sci Eng A 548:189–194CrossRefGoogle Scholar
  4. 4.
    Botcharova E, Heilmaier M, Freudenberger J, Drewa G, Kudashow D, Martin B, Martin U, Schultz L (2003) Supersaturated solid solution of niobium in copper by mechanical alloying. J Alloys Compd 351:119–125CrossRefGoogle Scholar
  5. 5.
    Lei R, Wang M, Wang H, Xu S (2016) New insights on the formation of supersaturated Cu–Nb solid solution. Mater Charact 118:324–331CrossRefGoogle Scholar
  6. 6.
    Musu E, Mura G, Ligios G (2013) Formation of metastable solid solutions by mechanical alloying of immiscible Ag and Bi. J Alloys Compd 576:80–85CrossRefGoogle Scholar
  7. 7.
    Liang G, Schulz R (2003) Synthesis of Mg–Ti alloy by mechanical alloying. J Mater Sci 38:1179–1184. CrossRefGoogle Scholar
  8. 8.
    Zhou E, Suryanarayana C, Froes FH (1995) Effect of premilling elemental powders on solid solubility extension of magnesium in titanium by mechanical alloying. Mater Lett 23:27–31CrossRefGoogle Scholar
  9. 9.
    Suryanarayana C, Liu J (2012) Processing and characterization of mechanically alloyed immiscible metals. Int J Mater Res 103:1125–1129CrossRefGoogle Scholar
  10. 10.
    Suryanarayana C (2001) Mechanical alloying and milling. Progr Mater Sci 46:1–184CrossRefGoogle Scholar
  11. 11.
    Ranganathan S, Murty BS (1998) Novel materials synthesis by mechanical alloying/milling. Int Mater Rev 43:101–141CrossRefGoogle Scholar
  12. 12.
    Badmos AY, Bhadeshia HD (1997) The evolution of solutions: a thermodynamic analysis of mechanical alloying. Metall Mater Trans A 28a:2189CrossRefGoogle Scholar
  13. 13.
    Raabe D, Ohsaki S, Hono K (2009) Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography. Acta Mater 57:5254–5263CrossRefGoogle Scholar
  14. 14.
    Ashkenazy Y, Vo NQ, Schwenk D, Averback RS, Bellon P (2012) Shear induced chemical mixing in heterogeneous systems. Acta Mater 60:984–993CrossRefGoogle Scholar
  15. 15.
    Guo W, Jägle EA, Cho P-P, Yao J, Kostka A, Schneider JM, Raabe D (2014) Shear-induced mixing governs code formation of crystalline–amorphous nanolaminates. Phys Rev Lett 113:035501CrossRefGoogle Scholar
  16. 16.
    Bergk B, Mühle U, Povstugar I, Kountá N, Holec D, Clemens H, Kieback B (2018) Non-equilibrium solid solution of molybdenum and sodium: atomic scale experimental and first principles studies. Acta Mater 144:700–706CrossRefGoogle Scholar
  17. 17.
    Massalaki TB (1990) Binary alloy phase diagrams. ASM International, OhioGoogle Scholar
  18. 18.
    Kehrel A, Keinonen J, Haussalo P, Lieb KP, Uhrmacher M (1991) Hydrogen trapping at radiation defects in sodium-implanted iron, nickel and molybdenum. Radiat Defects Solids 118:297–307CrossRefGoogle Scholar
  19. 19.
    Uhrmacher M, Lieb KP (1992) Sodium diffusion in metals observed by the 23Na(p, y) reaction. Nucl Instrum Methods Phys Res B68:175–179CrossRefGoogle Scholar
  20. 20.
    Giannuzzi LA, Kempshall BW, Anderson SD, Prenitzer BI (2002) FIB lift-out for defect analysis. Microelectron Fail Anal Desk Ref ASM Int 1:29–35Google Scholar
  21. 21.
    Pennycook SJ, Nellist PD (2011) Scanning transmission electron microscopy. Springer, New YorkCrossRefGoogle Scholar
  22. 22.
    Fecht H-J (1995) Nanostructure formation by mechanical attrition. NanoStruct Mater 6:33–42CrossRefGoogle Scholar
  23. 23.
    Eckert J, Holzer JC, Krill JC, Johnson WL (1993) Mechanically driven alloying grain size changes in nanocrystalline Fe–Cu powders. J Appl Phys 73:2794CrossRefGoogle Scholar
  24. 24.
    Eckert J (1995) Relationships governing the grain size of nanocrystalline metals and alloys. NanoStruct Mater 6:413–416CrossRefGoogle Scholar
  25. 25.
    Khoshkhoo MS, Scudino S, Bednarcik J, Kauffmann A, Bahmanpour H, Freudenberger J, Scattergood R, Zehetbauer MJ, Koch CC, Eckert J (2014) Mechanism of nanostructure formation in ball-milled Cu and Cu-3 wt% Zn studied by X-ray diffraction line profile analysis. J Alloys Compd 588:138–143CrossRefGoogle Scholar
  26. 26.
    Salimon AI, Korsunsky AM, Ivanov AN (1999) The character of dislocation structure evolution in nanocrystalline FCC Ni–Co alloys prepared by high-energy mechanical milling. Mater Sci Eng A 271:196–205CrossRefGoogle Scholar
  27. 27.
    Hall EO (1951) The deformation and ageing of mild steel III discussion of results. Proc Phys Soc Sect B 64:747–753CrossRefGoogle Scholar
  28. 28.
    Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28Google Scholar
  29. 29.
    Trapp J, Kieback B (2013) Solid-state reactions during high-energy milling of mixed powders. Acta Mater 61:310–320CrossRefGoogle Scholar
  30. 30.
    Shaw L, Zawrah M, Villegas J, Luo H, Miracle D (2003) Effects of process-control agents on mechanical alloying of nanostructured aluminium alloys. Metall Mater Trans A 34A:159CrossRefGoogle Scholar
  31. 31.
    Sheibani S, Heshmati-Manesh S, Ataie A (2010) Structural investigation on nano-crystalline Cu–Cr supersaturated solid solution prepared by mechanical alloying. J Alloys Compd 495:59–62CrossRefGoogle Scholar
  32. 32.
    Humphry-Baker SA, Garroni S, Delogu F, Schuh CA (2016) Melt-driven mechanochemical phase transformations in moderately exothermic powder mixtures. Nat Mater 16:1280CrossRefGoogle Scholar
  33. 33.
    Guttmann V (1970) Keimbildung bei der Rekristallisation von Molybdän. J Less-Common Met 21:51–61CrossRefGoogle Scholar
  34. 34.
    Mehrer H (2007) Diffusion in solids. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Materials ScienceTU DresdenDresdenGermany

Personalised recommendations