Advertisement

Journal of Materials Science

, Volume 53, Issue 19, pp 13424–13431 | Cite as

Nanocrystalline non-equilibrium alloys of molybdenum with sodium

  • Beate BergkEmail author
  • Uwe Mühle
  • Bernd Kieback
Mechanochemical Synthesis

Abstract

We present an experimental investigation of the immiscible alloy system Mo–Na with different Na concentrations between 1 and 8 at.%. These non-equilibrium alloys were created by mechanical alloying utilizing high-energy ball milling for up to 75 h. The different microstructures, particle-size distributions, and Na contents of the as-milled powder have been studied using transmission electron microscopy and scanning electron microscopy combined with energy-dispersive X-ray analysis. The maximum Na concentration incorporated into the Mo–Na alloy is identified to be 2 at.%. In addition, the thermal stability of the alloy was examined by analyzing the Na content after annealing at different temperatures and annealing times. While after milling with 1 at.% Na, the establishment of a solid solution was proved previously, the formation of a solid solution is limited to about 1.2 at.% if more Na is used. The residual incorporated Na is segregated at pores, defects, and grain boundaries.

Notes

Acknowledgements

The authors thank the Fraunhofer Institute for Ceramic Technologies and Systems, Materials Diagnostic (IKTS-MD), and the Dresden Center of Nanoanalysis (DCN) for the utilization of instruments for TEM preparation and characterization.

References

  1. 1.
    Ma E (2005) Alloys created between immiscible elements. Prog Mater Sci 50:413–509CrossRefGoogle Scholar
  2. 2.
    Aguilara C, Martiınez C, Naveac L (2009) Thermodynamic analysis of the change of solid solubility in a binary system processed mechanical alloying. J Alloys Compd 471:336–340CrossRefGoogle Scholar
  3. 3.
    Aguilara C, Castro F, Martínez C, Guzmán D, de las Cuevas F, Lozadal B, Vielma N (2012) Structural study of nanocrystalline solid solution of Cu–Mo obtained by mechanical alloying. Mater Sci Eng A 548:189–194CrossRefGoogle Scholar
  4. 4.
    Botcharova E, Heilmaier M, Freudenberger J, Drewa G, Kudashow D, Martin B, Martin U, Schultz L (2003) Supersaturated solid solution of niobium in copper by mechanical alloying. J Alloys Compd 351:119–125CrossRefGoogle Scholar
  5. 5.
    Lei R, Wang M, Wang H, Xu S (2016) New insights on the formation of supersaturated Cu–Nb solid solution. Mater Charact 118:324–331CrossRefGoogle Scholar
  6. 6.
    Musu E, Mura G, Ligios G (2013) Formation of metastable solid solutions by mechanical alloying of immiscible Ag and Bi. J Alloys Compd 576:80–85CrossRefGoogle Scholar
  7. 7.
    Liang G, Schulz R (2003) Synthesis of Mg–Ti alloy by mechanical alloying. J Mater Sci 38:1179–1184.  https://doi.org/10.1023/A:1022889100360 CrossRefGoogle Scholar
  8. 8.
    Zhou E, Suryanarayana C, Froes FH (1995) Effect of premilling elemental powders on solid solubility extension of magnesium in titanium by mechanical alloying. Mater Lett 23:27–31CrossRefGoogle Scholar
  9. 9.
    Suryanarayana C, Liu J (2012) Processing and characterization of mechanically alloyed immiscible metals. Int J Mater Res 103:1125–1129CrossRefGoogle Scholar
  10. 10.
    Suryanarayana C (2001) Mechanical alloying and milling. Progr Mater Sci 46:1–184CrossRefGoogle Scholar
  11. 11.
    Ranganathan S, Murty BS (1998) Novel materials synthesis by mechanical alloying/milling. Int Mater Rev 43:101–141CrossRefGoogle Scholar
  12. 12.
    Badmos AY, Bhadeshia HD (1997) The evolution of solutions: a thermodynamic analysis of mechanical alloying. Metall Mater Trans A 28a:2189CrossRefGoogle Scholar
  13. 13.
    Raabe D, Ohsaki S, Hono K (2009) Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography. Acta Mater 57:5254–5263CrossRefGoogle Scholar
  14. 14.
    Ashkenazy Y, Vo NQ, Schwenk D, Averback RS, Bellon P (2012) Shear induced chemical mixing in heterogeneous systems. Acta Mater 60:984–993CrossRefGoogle Scholar
  15. 15.
    Guo W, Jägle EA, Cho P-P, Yao J, Kostka A, Schneider JM, Raabe D (2014) Shear-induced mixing governs code formation of crystalline–amorphous nanolaminates. Phys Rev Lett 113:035501CrossRefGoogle Scholar
  16. 16.
    Bergk B, Mühle U, Povstugar I, Kountá N, Holec D, Clemens H, Kieback B (2018) Non-equilibrium solid solution of molybdenum and sodium: atomic scale experimental and first principles studies. Acta Mater 144:700–706CrossRefGoogle Scholar
  17. 17.
    Massalaki TB (1990) Binary alloy phase diagrams. ASM International, OhioGoogle Scholar
  18. 18.
    Kehrel A, Keinonen J, Haussalo P, Lieb KP, Uhrmacher M (1991) Hydrogen trapping at radiation defects in sodium-implanted iron, nickel and molybdenum. Radiat Defects Solids 118:297–307CrossRefGoogle Scholar
  19. 19.
    Uhrmacher M, Lieb KP (1992) Sodium diffusion in metals observed by the 23Na(p, y) reaction. Nucl Instrum Methods Phys Res B68:175–179CrossRefGoogle Scholar
  20. 20.
    Giannuzzi LA, Kempshall BW, Anderson SD, Prenitzer BI (2002) FIB lift-out for defect analysis. Microelectron Fail Anal Desk Ref ASM Int 1:29–35Google Scholar
  21. 21.
    Pennycook SJ, Nellist PD (2011) Scanning transmission electron microscopy. Springer, New YorkCrossRefGoogle Scholar
  22. 22.
    Fecht H-J (1995) Nanostructure formation by mechanical attrition. NanoStruct Mater 6:33–42CrossRefGoogle Scholar
  23. 23.
    Eckert J, Holzer JC, Krill JC, Johnson WL (1993) Mechanically driven alloying grain size changes in nanocrystalline Fe–Cu powders. J Appl Phys 73:2794CrossRefGoogle Scholar
  24. 24.
    Eckert J (1995) Relationships governing the grain size of nanocrystalline metals and alloys. NanoStruct Mater 6:413–416CrossRefGoogle Scholar
  25. 25.
    Khoshkhoo MS, Scudino S, Bednarcik J, Kauffmann A, Bahmanpour H, Freudenberger J, Scattergood R, Zehetbauer MJ, Koch CC, Eckert J (2014) Mechanism of nanostructure formation in ball-milled Cu and Cu-3 wt% Zn studied by X-ray diffraction line profile analysis. J Alloys Compd 588:138–143CrossRefGoogle Scholar
  26. 26.
    Salimon AI, Korsunsky AM, Ivanov AN (1999) The character of dislocation structure evolution in nanocrystalline FCC Ni–Co alloys prepared by high-energy mechanical milling. Mater Sci Eng A 271:196–205CrossRefGoogle Scholar
  27. 27.
    Hall EO (1951) The deformation and ageing of mild steel III discussion of results. Proc Phys Soc Sect B 64:747–753CrossRefGoogle Scholar
  28. 28.
    Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28Google Scholar
  29. 29.
    Trapp J, Kieback B (2013) Solid-state reactions during high-energy milling of mixed powders. Acta Mater 61:310–320CrossRefGoogle Scholar
  30. 30.
    Shaw L, Zawrah M, Villegas J, Luo H, Miracle D (2003) Effects of process-control agents on mechanical alloying of nanostructured aluminium alloys. Metall Mater Trans A 34A:159CrossRefGoogle Scholar
  31. 31.
    Sheibani S, Heshmati-Manesh S, Ataie A (2010) Structural investigation on nano-crystalline Cu–Cr supersaturated solid solution prepared by mechanical alloying. J Alloys Compd 495:59–62CrossRefGoogle Scholar
  32. 32.
    Humphry-Baker SA, Garroni S, Delogu F, Schuh CA (2016) Melt-driven mechanochemical phase transformations in moderately exothermic powder mixtures. Nat Mater 16:1280CrossRefGoogle Scholar
  33. 33.
    Guttmann V (1970) Keimbildung bei der Rekristallisation von Molybdän. J Less-Common Met 21:51–61CrossRefGoogle Scholar
  34. 34.
    Mehrer H (2007) Diffusion in solids. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Materials ScienceTU DresdenDresdenGermany

Personalised recommendations