Advertisement

Journal of Materials Science

, Volume 53, Issue 15, pp 10595–10616 | Cite as

State of the art of macro-defect-free composites

  • Özgür EkincioğluEmail author
  • M. Hulusi Özkul
  • Leslie J. Struble
  • Silvia Patachia
Review

Abstract

Macro-defect-free (MDF) composites, developed and patented by scientists from Imperial Chemical Industries in the early 1980s, are very high strength cement–polymer composites. The preparation of MDF composites is different from the production of conventional cement paste in that high shearing with a roller mill as well as moderate pressure (about 5 MPa) and moderate temperature (about 80–100 °C) are applied during the production. Very low water/cement ratio (w/c) levels are achieved (as low as 0.10) in this composite, much lower than in other cement-based materials. Of the many unique properties exhibited by MDF composites, surely the most remarkable is their high flexural strength. This is generally attributed to their low porosity and to cross-linking reactions between cement and polymer. MDF composites may reach a flexural strength of 200–300 MPa levels, whereas ordinary cement pastes have generally around 5–10 MPa. However, serious durability problems are observed in MDF composites, particularly their significant reductions in strength when immersed in water. Comprehensive information about MDF composite research will help in understanding the reasons behind the high strength, microstructure and water sensitivity of MDF composites. This review summarizes the materials, production methods, properties, microstructure, hydration reactions, durability and potential application areas of MDF composites as published since 1981.

Abbreviations

A

Al2O3—aluminum oxide—alumina

AFm

CA·CaSO4·12H—monosulfate

AFt

C3A·3CaSO4·32H—ettringite

AH3

Al2O33H2O—aluminate trihydrate—gibbsite

C

CaO—calcium oxide

CA

CaO·Al2O3—monocalcium aluminate

CAC

Calcium aluminate cement

CAH10

CaO·Al2O3·10H2O—calcium aluminate decahydrate

C2AH8

2CaO·Al2O3·8H2O—dicalcium aluminate octahydrate

C3AH6

3CaO·Al2O3·6H2O—tricalcium aluminate hexahydrate

CAPR

Calcium aluminate phenol resin

C–H

Ca(OH)—calcium hydroxide

C–S–H

Calcium silicate hydrate

EDS

Energy dispersive spectroscopy

EPMA

Electron probe microanalysis

FGDG

Flue gas desulfurization gypsum

FTIR

Fourier transform infrared spectroscopy

H

H2O

HPMC

Hydroxy propyl methyl cellulose

HRTEM

High-resolution transmission electron microscopy

HVTEM

High-voltage transmission electron microscopy

MDF

Macro-defect-free

MIP

Mercury intrusion porosimetry

OPC

Ordinary Portland cement

PAA

Poly(acrylic acid)

PAM

Polyacrylamide

PDMS

Polydimethylsiloxane

PE

Polyethylene

PEELS

Parallel electron energy loss spectrometry

poly-P

Polyphosphate glass

PR

Phenol resin

PVA

Poly(vinyl alcohol)

PVAc

Poly(vinyl alcohol-co-vinyl acetate)

S

SiO2

SADP

Selected area diffraction patterns

SAFB

Sulfoaluminate ferrite belite

SEM

Scanning electron microscopy

TEM

Transmission electron microscopy

TGA

Thermogravimetric analysis

XRD

X-ray diffraction

XPS

X-ray photoelectron spectroscopy

Notes

Acknowledgements

The authors would like to thank to Dr. Radoslav Novotny from Materials Research Centre of Brno University of Technology for conducting isothermal calorimetry tests given in Fig. 9.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Birchall JD, Howard AJ, Kendall K (1981) Flexural strength and porosity of cements. Nature 289:388–390.  https://doi.org/10.1038/289388a0 CrossRefGoogle Scholar
  2. 2.
    Birchall JD, Kendall K, Howard AJ (1981) Cementitious product. European Patent Office: EP0021682Google Scholar
  3. 3.
    Birchall JD, Howard AJ, Kendall K (1982) A cement spring. J Mater Sci Lett 1:125–126.  https://doi.org/10.1007/bf00724727 CrossRefGoogle Scholar
  4. 4.
    Birchall JD, Kendall K, Howard AJ (1982) Cementitious product. United States Patent Office: 4353748Google Scholar
  5. 5.
    Birchall JD, Howard AJ, Kendall K, Raistrick JH (1983) Cement composition and product. United States Patent Office: 4410366Google Scholar
  6. 6.
    Birchall JD, Kendall K, Wells GP (1984) Energy-economic inorganic materials: a new cement with tensile strength, informal discussion-energy engineering group. Proc Inst Civ Eng 76:305–308Google Scholar
  7. 7.
    Cannon CM, Groves GW (1986) Time-dependent mechanical properties of high-strength cements. J Mater Sci 21:4009–4014.  https://doi.org/10.1007/pl00020273 CrossRefGoogle Scholar
  8. 8.
    Kendall K (1987) Macro defect free (MDF) cements. Eur J Eng Educ 12:21–25.  https://doi.org/10.1080/03043798708939333 CrossRefGoogle Scholar
  9. 9.
    Drabik M, Mojumdar SC, Slade RCT (2002) Prospects of novel macro-defect-free cements for the new millennium. Ceram Silik 46:68–73Google Scholar
  10. 10.
    Donatello S, Tyrer M, Cheeseman CR (2009) Recent developments in macro-defect-free (MDF) cements. Constr Build Mater 23:1761–1767.  https://doi.org/10.1016/j.conbuildmat.2008.09.001 CrossRefGoogle Scholar
  11. 11.
    Russell PP (1991) Processing studies of macro-defect-free cement and investigation of chemical modifiers to improve the water resistance of the composite. M.Sc. Thesis, University of Illinois at Urbana-ChampaignGoogle Scholar
  12. 12.
    Alfani R, Colombet P, D’Amore A et al (1999) Effect of temperature on thermo-mechanical properties of macro-defect-free cement–polymer composite. J Mater Sci 34:5683–5687.  https://doi.org/10.1023/a:1004701529490 CrossRefGoogle Scholar
  13. 13.
    Delucchi M, Cerisola G (2001) Influence of organic coatings on the stability of macro-defect-free cements exposed to water. Constr Build Mater 15:351–359.  https://doi.org/10.1016/s0950-0618(01)00010-1 CrossRefGoogle Scholar
  14. 14.
    Ekincioglu O (2009) Investigations of moisture sensitivity in macro defect free cements. Ph.D. Dissertation, Istanbul Technical UniversityGoogle Scholar
  15. 15.
    Williams DF, McNamara A, Birchall JD et al (1984) The interaction between MDF cements and tissues. J Mater Sci 19:637–644.  https://doi.org/10.1007/bf00553589 CrossRefGoogle Scholar
  16. 16.
    Alford NM, Birchall JD (1985) Fibre toughening of MDF cement. J Mater Sci 20:37–45.  https://doi.org/10.1007/bf00555896 CrossRefGoogle Scholar
  17. 17.
    Sinclair W, Groves GW (1985) The microstructure of high strength cement pastes. In: Young JF (ed) Very high strength cement-based materials. Materials Research Society, Boston, pp 31–37Google Scholar
  18. 18.
    Sinclair W, Groves GW (1985) High strength cement pastes part 1: microstructures. J Mater Sci 20:2846–2852.  https://doi.org/10.1007/bf00553047 CrossRefGoogle Scholar
  19. 19.
    Rodger SA, Brooks SA, Sinclair W et al (1985) High strength cement pastes part 2: reactions during setting. J Mater Sci 20:2853–2860.  https://doi.org/10.1007/bf00553047 CrossRefGoogle Scholar
  20. 20.
    Kendall K, Birchall JD (1985) Porosity and its relationship to the strength of hydraulic cement pastes. In: Young JF (ed) Very high strength cement-based materials. Materials Research Society, Boston, pp 143–148Google Scholar
  21. 21.
    Sliva P, Cross LE, Gururaja TR, Scheetz BE (1986) Relative dielectric permittivity of calcium aluminate cement-glass microsphere composites. Mater Lett 4:475–480.  https://doi.org/10.1016/0167-577x(86)90041-8 CrossRefGoogle Scholar
  22. 22.
    Hands BA, Smith AJ, Groves GW, Double DD (1986) MDF cements for low temperature applications. In: Hartwig G, Evans D (eds) Nonmetallic materials and composites at low temperatures. Springer, Boston, pp 201–207CrossRefGoogle Scholar
  23. 23.
    Poon CS, Groves GW (1987) The effect of latex on macro-defect-free cement. J Mater Sci 22:2148–2152.  https://doi.org/10.1007/bf01132951 CrossRefGoogle Scholar
  24. 24.
    Chandrashekhar GV, Cooper EI, Shafer MW (1989) Dielectric properties of macro-defect-free (MDF) cements. J Mater Sci 24:3356–3360.  https://doi.org/10.1007/bf01139065 CrossRefGoogle Scholar
  25. 25.
    Titchell I, Davidge RW (1989) Time dependence of strength for macro-defect-free cement. J Mater Sci Lett 8:629–631.  https://doi.org/10.1007/bf01730425 CrossRefGoogle Scholar
  26. 26.
    Popoola OO, Kriven WM, Young JF (1991) Microstructural and microchemical characterization of a calcium aluminate-polymer composite (MDF cement). J Am Ceram Soc 74:1928–1933.  https://doi.org/10.1111/j.1151-2916.1991.tb07811.x CrossRefGoogle Scholar
  27. 27.
    Titchell I (1991) Environmental degradation of macro-defect-free cements part I mechanical properties investigation. J Mater Sci 26:1199–1204.  https://doi.org/10.1007/bf00544455 CrossRefGoogle Scholar
  28. 28.
    Lynn ME, Durey CA (1992) Cementitious products. United States Patent Office: 5147459Google Scholar
  29. 29.
    Ferber MK, Wereszczak AA, Hansen DH, Homeny J (1993) Evaluation of interfacial mechanical properties in SiC fiber-reinforced macro-defect-free cement composites. Compos Sci Technol 49:23–33.  https://doi.org/10.1016/0266-3538(93)90018-c CrossRefGoogle Scholar
  30. 30.
    McHugh AJ, Tan LS (1993) Mechano-chemical aspects of the processing/property/structure interactions in a macro-defect-free cement. Adv Cem Based Mater 1:2–11.  https://doi.org/10.1016/1065-7355(93)90003-7 CrossRefGoogle Scholar
  31. 31.
    Chu TJ (1993) Behavior of inorganic cements containing poly (vinyl alcohol). Ph.D, Dissertation, The University of MichiganGoogle Scholar
  32. 32.
    Boyer MA (1993) The effect of binder distribution and chemical modification on the moisture absorption kinetics of MDF cements. M.Sc. Thesis, University of Illinois at Urbana-ChampaignGoogle Scholar
  33. 33.
    Muhua T, Jinping L, Keru W (1994) The toughness of nylon fibre mats laminated MDF cement composites. Cem Concr Res 24:1185–1190.  https://doi.org/10.1016/0008-8846(94)90042-6 CrossRefGoogle Scholar
  34. 34.
    Chu TJ, Robertson RE (1994) Viscoelastic behaviour of macro-defect-free cement. J Mater Sci 29:2683–2690.  https://doi.org/10.1007/bf00356818 CrossRefGoogle Scholar
  35. 35.
    Desai PG, Lewis JA, Bentz DP (1994) Unreacted cement content in macro-defect-free composites: impact on processing-structure-property relations. J Mater Sci 29:6445–6452.  https://doi.org/10.1007/bf00354002 CrossRefGoogle Scholar
  36. 36.
    Bortzmeyer D, Frouin L, Montardi Y, Orange G (1995) Microstructure and mechanical properties of macro-defect-free cements. J Mater Sci 30:4138–4144.  https://doi.org/10.1007/bf00360721 CrossRefGoogle Scholar
  37. 37.
    Hasegawa M, Kobayashi T, Pushpalal GKD (1995) A new class of high strength, water and heat resistant polymer–cement composite solidified by an essentially anhydrous phenol resin precursor. Cem Concr Res 25:1191–1198.  https://doi.org/10.1016/0024-3205(95)00030-a CrossRefGoogle Scholar
  38. 38.
    Lewis JA, Boyer MA (1995) Effects of an organotitanate cross-linking additive on the processing and properties of macro-defect-free cement. Adv Cem Based Mater 2:2–7.  https://doi.org/10.1016/1065-7355(95)90033-0 CrossRefGoogle Scholar
  39. 39.
    Carter PC (1995) Development and optimization of the processing of MDF composites by extrusion. M.Sc. Thesis, University of Illinois at Urbana-ChampaignGoogle Scholar
  40. 40.
    Gulgun MA (1996) Processing and microstructure of standard and modified macro-defect-free cements. Ph.D. Dissertation, University of Illinois at Urbana-ChampaignGoogle Scholar
  41. 41.
    Tan LS, McHugh AJ (1996) The role of particle size and polymer molecular weight in the formation and properties of an organo-ceramic composite. J Mater Sci 31:3701–3706.  https://doi.org/10.1007/bf00352783 CrossRefGoogle Scholar
  42. 42.
    Tan LS, McHugh AJ, Gulgun MA, Kriven WM (1996) Evolution of mechano-chemistry and microstructure of a calcium aluminate-polymer composite: part II. Mixing rate effects. J Mater Res 11:1739–1747.  https://doi.org/10.1557/jmr.1996.0218 CrossRefGoogle Scholar
  43. 43.
    Desai PG (1997) Processing-structure-property relations in novel organocement composites. Ph.D. Dissertation, University of Illinois at Urbana-ChampaignGoogle Scholar
  44. 44.
    Di Maggio R, Franchini M, Guerrini G et al (1997) Fibre-matrix adhesion in fibre reinforced CAC-MDF composites. Cem Concr Compos 19:139–147.  https://doi.org/10.1016/s0958-9465(97)00002-4 CrossRefGoogle Scholar
  45. 45.
    Kobayashi T, Pushpalal GKD, Hasegawa M (1997) Cement, cement products, molding material, a concrete member and a method of producing the same. United States Patent Office: 5672214Google Scholar
  46. 46.
    Pushpalal GKD, Kobayashi T, Hasegawa M (1997) High alumina cement–phenol resin composite: water resistivity and effect of post hydration of unreacted cement on durability. Cem Concr Res 27:1393–1405.  https://doi.org/10.1016/s0008-8846(97)00130-0 CrossRefGoogle Scholar
  47. 47.
    Walberer JA, McHugh AJ (1998) Processing/property/structure interactions in a calcium aluminate-phenol resin composite. Adv Cem Based Mater 8:91–100.  https://doi.org/10.1016/s1065-7355(98)00011-x CrossRefGoogle Scholar
  48. 48.
    Pushpalal GKD, Kobayashi T, Kawano T, Maeda N (1999) The processing, properties, and applications of calcium aluminate–phenol resin composite. Cem Concr Res 29:121–132.  https://doi.org/10.1016/s0008-8846(98)00167-7 CrossRefGoogle Scholar
  49. 49.
    Walberer JA (2000) An investigation of the rheology of reactive and nonreactive highly filled polymer systems. Ph.D. Dissertation, University of Illinois at Urbana-ChampaignGoogle Scholar
  50. 50.
    Pushpalal GKD (2000) Fracture behavior of calcium aluminate-phenol resin composite. J Mater Sci 35:981–987.  https://doi.org/10.1023/a:1004771029440 CrossRefGoogle Scholar
  51. 51.
    McHugh AJ, Walberer JA (2001) Rheology and structuring in organo-ceramic composites. Compos A Appl Sci Manuf 32:1085–1093.  https://doi.org/10.1016/s1359-835x(00)00179-2 CrossRefGoogle Scholar
  52. 52.
    Ekincioglu O, Ozkul MH, Struble LJ (2008) Durability problems of macro defect free (MDF) cements prepared with polyvinyl alcohol copolymers and alumina cements. In: Turkeri N, Sengul O (eds) 11th DBMC international conference on durability of building materials and components, Istanbul, Turkey, pp 141–149Google Scholar
  53. 53.
    Ozkul MH, Ekincioglu O, Patachia S, et al (2008) Nanosilica influence on the macro-defect-free cements characteristics. In: COMAT—the 2nd international conference on advanced composite materials engineering, Brasov, Romania, pp 62–67Google Scholar
  54. 54.
    Ekincioglu O, Ozkul MH, Ohama Y et al (2011) Effect of epoxy resin addition on the moisture sensitivity of macro defect free polymer–cement composites. Key Eng Mater 466:65–72.  https://doi.org/10.4028/www.scientific.net/KEM.466.65 CrossRefGoogle Scholar
  55. 55.
    Legenstein BK, Gunther M (2012) Macro-Defect-Free (MDF) cements exposed to fluids: Experimental study. In: Skorokhod V (ed) Proceedings of the symposium on advanced composite material and technology. Properties and applications. Warsaw, Poland, pp 75–84Google Scholar
  56. 56.
    Ekincioglu O, Ozkul MH, Patachia S, Moise G (2013) Effect of TiO2 addition on the properties of macro defect free cement–polymer composites. Restor Build Monum 19:125–134.  https://doi.org/10.1515/rbm-2013-6587 CrossRefGoogle Scholar
  57. 57.
    Zhang W (2014) Synthesis and fracture toughness of macro-defect-free (MDF) cement. M.Sc. Thesis, University of Illinois at Urbana-ChampaignGoogle Scholar
  58. 58.
    Ekincioglu O, Ozkul MH, Struble LJ, Patachia S (2012) Optimization of material characteristics of macro-defect free cement. Cem Concr Compos 34:556–565.  https://doi.org/10.1016/j.cemconcomp.2011.11.003 CrossRefGoogle Scholar
  59. 59.
    Masilko J, Soukal F, Zurova M et al (2016) Mechanisms of macro-pores origin in the MDF composites fabrication. Mater Sci Forum 851:86–91.  https://doi.org/10.4028/www.scientific.net/MSF.851.86 CrossRefGoogle Scholar
  60. 60.
    Sliva P (1988) The development and processing of calcium aluminate cement as a low relative dielectric permittivity material. Ph.D. Dissertation, The Pennsylvania State UniversityGoogle Scholar
  61. 61.
    Gulgun MA, Kriven WM, Tan LS, McHugh AJ (1995) Evolution of mechano-chemistry and microstructure of a calcium aluminate-polymer composite: part I. Mixing time effects. J Mater Res 10:1746–1755.  https://doi.org/10.1557/jmr.1995.1746 CrossRefGoogle Scholar
  62. 62.
    Guerrini GL (2000) Applications of high-performance fiber-reinforced cement-based composites. Appl Compos Mater 7:195–207.  https://doi.org/10.1023/a:100899402 CrossRefGoogle Scholar
  63. 63.
    Di Maggio R, Franchini M, Guerrini G, et al (1998) MDF cement compositions with improved impact strength. United States Patent Office: 5814146Google Scholar
  64. 64.
    Dalkılıç S (2011) Investigation of moisture sensitivity in macro defect free (MDF) composites produced with various additives (in Turkish). M.Sc. Thesis, Istanbul Technical UniversityGoogle Scholar
  65. 65.
    Emami S, Nooranian H, Kamalloo A (2011) Flexural strength and microstructure of alkali-resistant glass fibre reinforced calcium aluminate–phenol resin composite. Adv Cem Res 23:11–15.  https://doi.org/10.1680/adcr.9.00002 CrossRefGoogle Scholar
  66. 66.
    Soukal F, Ptacek P, Masilko J et al (2014) High temperature properties of MDF composite based on calcium aluminate cement and polyvinyl alcohol. J Therm Anal Calorim 115:1245–1252.  https://doi.org/10.1007/s10973-013-3481-9 CrossRefGoogle Scholar
  67. 67.
    Pushpalal GKD, Kawano T, Kobayashi T, Hasegawa M (1997) Chemical characterization of calcium aluminate-phenol resin composite. Adv Cem Based Mater 6:45–52.  https://doi.org/10.1016/s1065-7355(97)00005-9 CrossRefGoogle Scholar
  68. 68.
    Ekincioglu O, Ozkul MH, Struble L (2007) A case study: moisture resistance of macro defect free (MDF) cements produced with different polyvinyl alcohol polymers. Bull Transilv Univ Brasov 4:331–336Google Scholar
  69. 69.
    Moise G, Patachia S, Ozkul MH et al (2008) Morphological characterization of high alumina cement-based macro defect free cements. Bull Transilv Univ Brasov 1:251–254Google Scholar
  70. 70.
    Patachia S, Moise G, Ozkul H et al (2009) Ecological polymer used for macro-defect-free cements (MDF) production. Environ Eng Manag J 8:679–684CrossRefGoogle Scholar
  71. 71.
    Patachia S, Moise G, Ozkul H et al (2009) Influence of the obtaining technology on the macro defect free cements characteristics. Pollack Period 4:75–82.  https://doi.org/10.1556/pollack.4.2009.1.8 CrossRefGoogle Scholar
  72. 72.
    Patachia S, Moise G, Ozkul MH, Ekincioglu O (2009) Influence of the self crosslinkable polymers on the properties of the macro defect free (MDF) cements. Bull Transilv Univ Brasov 2:181–186Google Scholar
  73. 73.
    Repka M (2010) MDF composites AC-PVAL with increased moisture resistance. M.Sc. Thesis, Brno University of TechnologyGoogle Scholar
  74. 74.
    D’Amore A, Grassia L (2010) Toughening the macro defect free (MDF) cements. AIP Conf Proc 1255:402–404.  https://doi.org/10.1063/1.3455650 CrossRefGoogle Scholar
  75. 75.
    Patachia S, Moise G, Ozkul H, Ekincioglu O (2011) Characterization of ecological macro defect free (MDF) cements by infrared spectrometry. Environ Eng Manag J 10:237–240CrossRefGoogle Scholar
  76. 76.
    Amstutz AK (2016) Macro defect free cement with improved moisture resistance. United States Patent Office: 2016/0221871 A1Google Scholar
  77. 77.
    Baltes L, Patachia S, Tierean M et al (2018) Photoactive glazed polymer–cement composite. Appl Surf Sci 438:84–95.  https://doi.org/10.1016/j.apsusc.2017.09.068 CrossRefGoogle Scholar
  78. 78.
    Anderson K, Akono AT (2017) Microstructure–toughness relationships in calcium aluminate cement–polymer composites using instrumented scratch testing. J Mater Sci 52:13120–13132.  https://doi.org/10.1007/s10853-017-1416-8 CrossRefGoogle Scholar
  79. 79.
    Eden NB, Bailey JE (1984) The mechanical properties and tensile failure mechanism of a high strength polymer modified Portland cement. J Mater Sci 19:2677–2690.  https://doi.org/10.1007/bf00550825 CrossRefGoogle Scholar
  80. 80.
    Pearson D, Allen AJ (1985) A study of ultrafine porosity in hydrated cements using small angle neutron scattering. J Mater Sci 20:303–315.  https://doi.org/10.1007/bf00555924 CrossRefGoogle Scholar
  81. 81.
    Rodger SA, Sinclair W, Groves GW et al (1985) Reactions in the setting of high strength cement pastes. In: Young JF (ed) Very high strength cement-based materials. Materials Research Society, Boston, pp 45–51Google Scholar
  82. 82.
    Falkner RF (1989) Processing of Portland cement macro-defect-free composites. M.Sc. Thesis, University of Illinois at Urbana-ChampaignGoogle Scholar
  83. 83.
    Dunster AM, Parsonage JR (1988) A trimethylsilylation study of the silicate anion distribution of macro defect-free Portland cement. Cem Concr Res 18:758–762.  https://doi.org/10.1016/0008-8846(88)90100-7 CrossRefGoogle Scholar
  84. 84.
    Chou Y-S, Mecholsky JJ, Silsbee M (1990) Fracture toughness of macro-defect-free cement using small crack techniques. J Mater Res 5:1774–1780.  https://doi.org/10.1557/jmr.1990.1774 CrossRefGoogle Scholar
  85. 85.
    Santos RS, Rodrigues FA, Segre N, Joekes I (1999) Macro-defect free cements Influence of poly(vinyl alcohol), cement type, and silica fume. Cem Concr Res 29:747–751.  https://doi.org/10.1016/s0008-8846(99)00070-8 CrossRefGoogle Scholar
  86. 86.
    Poon CS, Groves GW (1988) The microstructure of macro-defect-free cement with different polymer contents and the effect on water stability. J Mater Sci 23:657–660.  https://doi.org/10.1007/bf01174701 CrossRefGoogle Scholar
  87. 87.
    Park CK (1993) Synthesis and characterization of high-performance chemically bonded ceramics. Ph.D. Dissertation, The Pennsylvania State UniversityGoogle Scholar
  88. 88.
    Poon CS (1998) The influence of admixtures on the microstructure and water stability of macro-defect-free cement. J Mater Sci Lett 17:1593–1595.  https://doi.org/10.1023/a:100652412 CrossRefGoogle Scholar
  89. 89.
    Drabik M, Galikova L, Varshney KG, Quraishi MA (2004) MDF cements-synergy of the humidity and temperature effects. J Therm Anal Calorim 76:91–96.  https://doi.org/10.1023/b:jtan.0000027807.89788.d4 CrossRefGoogle Scholar
  90. 90.
    Drabik M, Galikova L, Balkovic S, Slade RCT (2006) Macro-defect-free materials with controlled moisture resistance. In: Proceedings of ACI session on nanotechnology of concrete: recent developments and future perspective, Denver, USA, pp 145–155Google Scholar
  91. 91.
    Drabik M, Galikova L, Slade RCT (2006) Chemistry for the design and better understanding of cement-based materials and composites. Chem Pap 60:91–97.  https://doi.org/10.2478/s11696-006-0017-9 CrossRefGoogle Scholar
  92. 92.
    Drabik M, Galikova L, Balkovic S, Slade RCT (2007) Potential of Portland cements for MDF materials. J Phys Chem Solids 68:1057–1061.  https://doi.org/10.1016/j.jpcs.2007.03.006 CrossRefGoogle Scholar
  93. 93.
    Kobayashi T, Ohama Y, Demura K (1995) A few trials for improvement in water resistance of macro-defect-free cements. In: Polymers in concrete, proceedings of the eight international congress polymers in concrete. Technological Institute of the Royal Flemish Society of Engineers, Antwerp, Belgium, pp 527–532Google Scholar
  94. 94.
    Ohama Y, Demura K, Kobayashi T (1993) Improvement in water resistance of macro-defect-free cements using ordinary Portland cement. In: Proceedings of the 3rd Japan congress on materials research. The Society of Materials Science, Kyoto, Japan, pp 192–195Google Scholar
  95. 95.
    Drabik M, Billik P, Galikova L (2012) Macro defect free materials; the challenge of mechanochemical activation. Ceram Silik 56:396–401Google Scholar
  96. 96.
    Drabik M, Galikova L, Billik P et al (2013) Macro defect free materials; mechanochemical activation of raw mixes as the intensifying tool of the entire MDF synthesis. Ceram Silik 57:120–125Google Scholar
  97. 97.
    Nakamura H, Mihashi H (1997) Development of MDF cementitious composites based on packing theory. In: Ohama Y, Kawakami M, Fukuzawa K (eds) Proceedings of the second East Asia symposium on polymers in concrete, E&FN Spon, London, pp 521–528Google Scholar
  98. 98.
    Kobayashi T, Ohama Y, Demura K, Ochiai K (1997) Factors effecting flexural strength of MDF cements. In: Ohama Y, Kawakami M, Fukuzawa K (eds) Proceedings of the second East Asia symposium on polymers in concrete, E&FN Spon, London, pp 529–535Google Scholar
  99. 99.
    Hu S, Wang S (1993) Study on PAT porosimetry and its application in MDF cement. In: ZhaoQi W, JiaFen J, ShiYuan H, et al (eds) Proceedings of the 3rd Beijing international symposium on cement and concrete, vol 2. Beijing, China, pp 1087–1092Google Scholar
  100. 100.
    Zhu H, Wu X, Tang M (1989) The strength increasing mechanism in MDF cement. In: Nanru Y, Jiafen J, Shiyuan H (eds) Proceedings of the 2nd international symposium on cement and concrete, vol 1. Beijing, China, pp 352–359Google Scholar
  101. 101.
    Drabik M, Galikova L, Kubranova M, Slade RCT (1994) Studies of model macroscopic-defect-free materials. Part 1: investigations of the system 4CaO·Al2O3·Fe2O3–4CaO·3Al2O3·SO3–HPMC–H2O by X-ray, thermoanalytical and NMR techniques. J Mater Chem 4:265–269.  https://doi.org/10.1039/jm9940400265 CrossRefGoogle Scholar
  102. 102.
    Drabik M, Galikova L, Sadlekova Z, Kubranova M (1996) Cross-linking of atoms and thermal stability of new MDF compositions. J Therm Anal 46:479–487.  https://doi.org/10.1007/bf02135025 CrossRefGoogle Scholar
  103. 103.
    Drabik M, Galikova L, Hix GB et al (1997) Model MDFs related to sulfobelitic systems: studies by 57Fe Mössbauer and electrical impedance techniques. Cem Concr Res 27:127–135.  https://doi.org/10.1016/s0008-8846(96)00185-8 CrossRefGoogle Scholar
  104. 104.
    Drabik M, Zimmerman P, Slade RCT (1998) Chemistry of MDF materials based on SAFB clinkers; syntheses and tests of moisture resistance. Adv Cem Res 10:129–133.  https://doi.org/10.1680/adcr.1998.10.3.129 CrossRefGoogle Scholar
  105. 105.
    Drabik M, Galikova L, Zimmerman P (1999) Attack by moisture on advanced cement-based macroscopic defect-free materials—a thermoanalytical study. J Therm Anal Calorim 56:117–124.  https://doi.org/10.1023/a:1010143627735 CrossRefGoogle Scholar
  106. 106.
    Mojumdar SC (2001) Processing-moisture resistance and thermal analysis of macro-defect-free materials. J Therm Anal Calorim 64:1133–1139.  https://doi.org/10.1023/a:1011580626499 CrossRefGoogle Scholar
  107. 107.
    Drabik M, Mojumdar SC, Galikova L (2001) Changes of thermal events of macro-defect-free (MDF) cements due to the deterioration in the moist atmosphere. Cem Concr Res 31:743–747.  https://doi.org/10.1016/s0008-8846(01)00488-4 CrossRefGoogle Scholar
  108. 108.
    Drabik M, Slade RCT (2004) Macro-defect-free materials: modification of interfaces in cement composites by polymer grafting. Interface Sci 12:375–379.  https://doi.org/10.1023/b:ints.0000042335.65518.11 CrossRefGoogle Scholar
  109. 109.
    Mojumdar SC, Mazanec K, Drabik M (2006) Macro-defect-free (MDF) cements: synthesis, thermal, chemical, SEM and magnetometric study and moisture resistance. J Therm Anal Calorim 83:135–139.  https://doi.org/10.1007/s10973-005-7045-5 CrossRefGoogle Scholar
  110. 110.
    Mojumdar SC, Chowdhury B, Varshney KG, Mazanec K (2004) Synthesis, moisture resistance, thermal, chemical and SEM analysis of macro-defect-free (MDF) cements. J Therm Anal Calorim 78:135–144.  https://doi.org/10.1023/b:jtan.0000042161.12490.92 CrossRefGoogle Scholar
  111. 111.
    Huang C, Long S (1993) Reinforcing and toughening mechanism of coupling agent KH and polymer PVA in sulphoaluminate-MDF cement. In: ZhaoQi W, JiaFen J, ShiYuan H, et al (eds) Proceedings of the 3rd Beijing international symposium on cement and concrete, vol 1. Beijing, China, pp 393–396Google Scholar
  112. 112.
    Huang C, Yuan R, Long S (2004) The pore structure and hydration performance of sulphoaluminate MDF cement. J Wuhan Univ Technol 19:83–85CrossRefGoogle Scholar
  113. 113.
    Huang C, Yuan R, Long S (2005) Investigation of PAT for advanced sulphoaluminate MDF cement. J Wuhan Univ Technol 20:104–105Google Scholar
  114. 114.
    Chandrashekhar GV, Shafer MW (1989) Polymer impregnation of macro-defect-free cements. J Mater Sci 24:3353–3355.  https://doi.org/10.1007/bf01139064 CrossRefGoogle Scholar
  115. 115.
    Castano VM, Martinez G, Aleman JL, Jimenez A (1990) Fractal structure of the pore surface of hydrated Portland cement pastes. J Mater Sci Lett 9:1115–1116.  https://doi.org/10.1007/bf00727895 CrossRefGoogle Scholar
  116. 116.
    Messersmith PB (1993) Synthesis and characterization of novel polymer-ceramic nanocomposites: organoceramics. Ph.D. Dissertation, University of Illinois at Urbana-ChampaignGoogle Scholar
  117. 117.
    Ishida H, McCoy M, Bando T, Hatta H (2010) Development of a novel, ultra-performance polymer cement: in situ formation of benzoxazine monomer and subsequent formation of polybenzoxazine/cement composites. Polym Compos 31:1995–2006.  https://doi.org/10.1002/pc.20991 CrossRefGoogle Scholar
  118. 118.
    Li BX, Zhang WS (2003) Chemical reaction between polyvinyl alcohol and titanate coupling agent with X-ray photoelectron spectroscopy. J Wuhan Univ Technol Sci Ed 18:71–74CrossRefGoogle Scholar
  119. 119.
    Liutkus JJ, Kovac CA (1988) Polysiloxane modified cement. United States Patent Office: 4780754Google Scholar
  120. 120.
    Chowdhury B (2004) Investigations into the role of activated carbon in a moisture-blocking cement formulation. J Therm Anal Calorim 78:215–226.  https://doi.org/10.1023/b:jtan.0000042169.37321.24 CrossRefGoogle Scholar
  121. 121.
    Chowdhury B (2004) Method for using activated carbon for producing moisture-blocking durable cement, composition for the same and method of characterizing the same. United States Patent Office: 6797052Google Scholar
  122. 122.
    Brown JL (1996) Cement products and a method of manufacture thereof. United States Patent Office: 5514744Google Scholar
  123. 123.
    Wu Q, Zhu Z, Li S et al (2017) Effect of polyacrylic ester emulsion on mechanical properties of macro-defect free desulphurization gypsum plaster. Constr Build Mater 153:656–662.  https://doi.org/10.1016/j.conbuildmat.2017.07.109 CrossRefGoogle Scholar
  124. 124.
    Hsueh CH, Ferber MK (1993) Evaluations of residual axial stresses and interfacial friction in Nicalon fibre-reinforced macro-defect-free cement composites. J Mater Sci 28:2551–2556.  https://doi.org/10.1007/bf01151691 CrossRefGoogle Scholar
  125. 125.
    Park CK (1998) Characterization of fiber reinforced macro-defect-free cementitious materials. J Ceram Soc Jpn 106:268–271.  https://doi.org/10.2109/jcersj.106.268 CrossRefGoogle Scholar
  126. 126.
    Nippon Gohsei, The Nippon Synthetic Chemical Industry Co. Ltd. J (2016) K Type Gohsenol. http://www.gohsenol.com/doc_e/gnrl/gnrl_01/gnrl_05.shtml. Accessed 12 Dec 2017
  127. 127.
    Lewis JA, Boyer M, Bentz DP (1994) Binder distribution in macro-defect-free cements—relation between percolative properties and moisture absorption kinetics. J Am Ceram Soc 77:711–716.  https://doi.org/10.1111/j.1151-2916.1994.tb05354.x CrossRefGoogle Scholar
  128. 128.
    Tan LS (1992) Processing-property interactions in macro-defect-free cement. M.Sc. Thesis, University of Illinois at Urbana-ChampaignGoogle Scholar
  129. 129.
    Tan LS (1995) Processing-property characteristics of a polymer–cement composite. Ph.D. Dissertation, University of Illinois at Urbana-ChampaignGoogle Scholar
  130. 130.
    Kalina L, Masilko J, Koplik J, Soukal F (2014) XPS characterization of polymer-monocalcium aluminate interface. Cem Concr Res 66:110–114.  https://doi.org/10.1016/j.cemconres.2014.07.021 CrossRefGoogle Scholar
  131. 131.
    Kalina L, Matousek D, Soukal F (2014) Utilization of XPS analysis for the characterization of mechanochemical activation in polymer-cement composite materials. Adv Mater Res 1000:231–234.  https://doi.org/10.4028/www.scientific.net/AMR.1000.231 CrossRefGoogle Scholar
  132. 132.
    ASTM F394-78 (Reapproved 1996) (1978) Standard test method for biaxial flexure strength (modulus of rupture) of ceramic substrates. West Conshohocken, PA, USAGoogle Scholar
  133. 133.
    Alford NM, Birchall JD (1985) The properties and potential applications of macro-defect-free cement. In: Young JF (ed) Very high strength cement-based materials. Materials Research Society, Boston, pp 265–276Google Scholar
  134. 134.
    Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc A Math Phys Eng Sci 221:163–198.  https://doi.org/10.1098/rsta.1921.0006 CrossRefGoogle Scholar
  135. 135.
    Edmonds RN, Majumdar AJ (1989) The hydration of an aluminous cement with added polyvinyl alcohol-acetate. J Mater Sci 24:3813–3818.  https://doi.org/10.1007/bf01168940 CrossRefGoogle Scholar
  136. 136.
    Bailey JE, Higgins DD (1981) Flexural strength of cements-matters arising. Nature 292:89.  https://doi.org/10.1038/292089a0 CrossRefGoogle Scholar
  137. 137.
    Chatterji S (1981) Flexural strength of cements-matters arising. Nature 292:89.  https://doi.org/10.1038/292089b0 CrossRefGoogle Scholar
  138. 138.
    Eden NB, Bailey JE (1984) On the factors affecting strength of Portland cement. J Mater Sci 19:150–158.  https://doi.org/10.1007/bf00553004 CrossRefGoogle Scholar
  139. 139.
    Eden NB, Bailey JE (1985) Discussion—comments on the mechanical properties and tensile failure mechanism of a high strength polymer modified Portland cement. J Mater Sci 20:3418–3420.  https://doi.org/10.1007/BF00545211 CrossRefGoogle Scholar
  140. 140.
    Eden NB, Bailey JE (1985) Reply to comments on the factors affecting strength of Portland cement. J Mater Sci 20:1137–1139.  https://doi.org/10.1007/bf00585759 CrossRefGoogle Scholar
  141. 141.
    Messersmith PB, Stupp SI (1992) Synthesis of nanocomposites: organoceramics. J Mater Res 7:2599–2611.  https://doi.org/10.1557/jmr.1992.2599 CrossRefGoogle Scholar
  142. 142.
    Becze CE, Xu G (1997) New microstructural model of polymer-ceramic nanocomposite materials. J Mater Res 12:566–571.  https://doi.org/10.1557/jmr.1997.0081 CrossRefGoogle Scholar
  143. 143.
    Drabik M (2009) Contribution of materials chemistry to the knowledge of macro-defect-free (MDF) materials. Pure Appl Chem 81:1413–1421.  https://doi.org/10.1351/pac-con-08-07-16 CrossRefGoogle Scholar
  144. 144.
    Wegner G (2012) Functional polymers. Acta Mater 48:253–262.  https://doi.org/10.1002/9780470661345.smc165 CrossRefGoogle Scholar
  145. 145.
    Lewis JA, Kriven WM (1993) Microstructure-property relationships in macro defect free cement. MRS Bull 18:72–76.  https://doi.org/10.1557/s0883769400043943 CrossRefGoogle Scholar
  146. 146.
    Bonapasta AA, Buda F, Colombet P (2000) Cross-linking of poly (vinyl alcohol) chains by Al ions in macro-defect-free cements: a theoretical study. Chem Mater 12:738–743.  https://doi.org/10.1021/cm990475t CrossRefGoogle Scholar
  147. 147.
    BS EN-14647:2005 (2006) Calcium aluminate cement. Composition, specifications and conformity criteria. LondonGoogle Scholar
  148. 148.
    Comotti A, Simonutti R, Sozzani P (1997) Morphology of the poly (vinyl alcohol)—poly (vinyl acetate) copolymer in macro-defect-free composites: a 13C magic-angle-spinning nuclear magnetic resonance and 1H spin-diffusion study. J Mater Sci 32:4237–4245.  https://doi.org/10.1023/a:1018695000769 CrossRefGoogle Scholar
  149. 149.
    Atkins KM, Edmonds RN, Majumdar AJ (1991) The hydration of Portland and aluminous cements with added polymer dispersions. J Mater Sci 26:2372–2378.  https://doi.org/10.1007/bf01130184 CrossRefGoogle Scholar
  150. 150.
    Kriven WM, Popoola OO (1991) The microstructure and microchemistry of organoceramics. In: Howitt DG (ed) Microbeam analysis. San Fransisco Press, pp 167–170Google Scholar
  151. 151.
    Georgescu M, Puri A, Coarna M et al (2002) Thermoanalytical and infrared spectroscopy investigations of some mineral pastes containing organic polymers. Cem Concr Res 32:1269–1275.  https://doi.org/10.1016/s0008-8846(02)00762-7 CrossRefGoogle Scholar
  152. 152.
    Young JF (1970) Effect of organic compounds on the interconversions of calcium aluminate hydrates. Hydration of tricalcium aluminate. J Am Ceram Soc 53:65–69CrossRefGoogle Scholar
  153. 153.
    Young JF (1971) Effect of organic compounds on the interconversions of calcium aluminate hydrates. Hydration of monocalcium aluminate. Cem Concr Res 1:113–122.  https://doi.org/10.1016/0008-8846(71)90088-3 CrossRefGoogle Scholar
  154. 154.
    Odler I (2000) Special Inorganic Cements, 1st edn. Taylor & Francis Group, LondonGoogle Scholar
  155. 155.
    Moise G (2010) Researches in the field of composite materials based on vinylic polymers. Ph.D. Dissertation, Transilvania University of BrasovGoogle Scholar
  156. 156.
    Atkinson AW, Walsh AT (1986) Treatment of cementitious products. UK Patent Office: GB2168692Google Scholar
  157. 157.
    Desai PG (1992) Cement polymer interactions in macro-defect-free composites. M.Sc. Thesis, University of Illinois at Urbana-ChampaignGoogle Scholar
  158. 158.
    Rodrigues FA, Joekes I (1998) Macro-defect-free cements: a new approach. Cem Concr Res 28:877–885.  https://doi.org/10.1017/cbo9781107415324.004 CrossRefGoogle Scholar
  159. 159.
    Arthur JR, Graupner RK, Monson TK, et al (1997) Concrete solar cell. United States Patent Office: 5672214Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Civil EngineeringIstanbul Technical UniversityMaslak, Sariyer, IstanbulTurkey
  2. 2.Emeritus Professor of Faculty of Civil and Environmental EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Faculty of Product Design and Environmental ProtectionTransilvania University of BrasovBrasovRomania

Personalised recommendations