Journal of Materials Science

, Volume 53, Issue 13, pp 9830–9841 | Cite as

Effect of Sn substitution on the energy storage properties of 0.45SrTiO3–0.2Na0.5Bi0.5TiO3–0.35BaTiO3 ceramics

  • Chenwei Cui
  • Yongping PuEmail author


Phase constitution, microstructure, dielectric performance, polarization, breakdown strength as well as energy storage behaviors for the (1 − x)(0.45SrTiO3–0.2Na0.5Bi0.5TiO3–0.35BaTiO3)–xSnO2 (STNBTBT–Snx) were systematically investigated. The dielectric measurements exhibit a relaxor behavior, and the dielectric loss is very low (< 0.6%) at room temperature for all compositions. Significant refinement of grain size and low dielectric loss were observed with the addition of Sn, accounting for effectively enhanced dielectric breakdown strength (17.0–25.2 kV/mm when x = 0~0.09), beneficial for the energy storage applications. The sample with x = 0.07 exhibits the highest energy storage density of 2.25 J/cm3 and an energy storage efficiency of 79.51% at 24 kV/mm. Particularly, its energy storage properties were found to depend weakly on frequency (1–100 Hz). Our results suggest that this system can be a potential lead-free candidate for high electric energy storage and discharge efficiency.



This research was supported by the National Natural Science Foundation of China (51372144, 51641207), and the Key Program of Innovative Research Team of Shaanxi Province (2014KCT-06) and National Undergraduate Training Programs for Innovation and Entrepreneurship (201710708009).


  1. 1.
    Lahmar A, Belhadi J, El Marssi M, et al (2017) Energy storage property of lead-free Na0.5Bi0.5TiO3 ceramic and thin film. In: 2017 international conference in energy and sustainability in small developing economies (ES2DE).
  2. 2.
    Zhang M, Zhang L, Zhu M et al (2016) Controlled functionalization of poly (4-methyl-1-pentene) films for high energy storage applications. J Mater Chem A 4:4797CrossRefGoogle Scholar
  3. 3.
    Wu P, Zhang M, Wang H, Tang H, Bass P, Zhang L (2017) Effect of coupling agents on the dielectric properties and energy storage of Ba0.5Sr0.5TiO3/P(VDF-CTFE) nanocomposites. AIP Adv 7:075210CrossRefGoogle Scholar
  4. 4.
    Zhang L, Wu P, Li Y, Cheng Z-Y (2014) Preparation process and dielectric properties of Ba0.5Sr0.5TiO3-P(VDF-CTFE) nanocomposites. Compos Part B 56:284CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Hao X, Li M (2014) Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3 thick films. J Alloys Compd 601:112–115CrossRefGoogle Scholar
  6. 6.
    Pan J, Li K, Chuayprakong S, Hsu T, Wang Q (2010) High-temperature poly (phthalazinone ether ketone) thin films for dielectric energy storage. ACS Appl Mater Interfaces 2:1286–1289CrossRefGoogle Scholar
  7. 7.
    Wang ZJ, Cao MH, Yao ZH et al (2014) Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceram Int 40:14127–14132CrossRefGoogle Scholar
  8. 8.
    Wang C, Lou XJ, Xia TD et al (2017) The dielectric, strain and energy storage density of BNT-BKHxT1−x piezoelectric ceramics. Ceram Int 43:9253–9258CrossRefGoogle Scholar
  9. 9.
    Wang T, Jin L, Li C, Hu Q, Wei X (2015) Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J Am Ceram Soc 98:559CrossRefGoogle Scholar
  10. 10.
    Cui CW, Pu YP, Gao ZY et al (2017) Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. J Alloys Compd 711:319–326CrossRefGoogle Scholar
  11. 11.
    Wang T, Jin L, Shu LL et al (2014) Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO–B2O3–SiO2–Na2CO3–K2CO3 glass. J Alloys Compd 617:399–403CrossRefGoogle Scholar
  12. 12.
    Liu X, Du HL, Liu XC et al (2016) Energy storage properties of BiTi0.5Zn0.5O3–Bi0.5Na0.5TiO3–BaTiO3 relaxor ferroelectrics. Ceram Int 42:17876–17879CrossRefGoogle Scholar
  13. 13.
    Cao WP, Li WL, Dai XF, Zhang TD, Sheng J, Hou YF, Fei WD (2016) Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J Eur Ceram Soc 36:593–600CrossRefGoogle Scholar
  14. 14.
    Cao WP, Li WL, Zhang TD et al (2015) High-energy storage density and efficiency of (1 − x)[0.94NBT–0.06BT]–xST lead-free ceramics. Energy Technol 3:1198–1204CrossRefGoogle Scholar
  15. 15.
    Payne WH, Tennery VJ (1965) Dielectric and structural investigations of the system BaTiO3–BaHfO3. J Am Ceram Soc 48:413–417CrossRefGoogle Scholar
  16. 16.
    Chen A, Zhi Y, Zhi J (2000) Impurity-induced ferroelectric relaxor behavior in quantum paraelectric SrTiO3 and ferroelectric BaTiO3. Phys Rev B 61:957CrossRefGoogle Scholar
  17. 17.
    Zhi J, Chen A, Zhi Y, Vilarinho PM, Baptista JL (1998) Dielectric properties of Ba(Ti1−yYy)O3 ceramics. J Appl Phys 84:983CrossRefGoogle Scholar
  18. 18.
    Syono Y, Akimoto S, Kohn K (1969) Structure relations of hexagonal perovskite-like compounds ABX3 at high pressure. J Phys Soc Jpn 26:993–999CrossRefGoogle Scholar
  19. 19.
    Smolenskii GA, Isupov VA (1954) Segnetoelektricheskie svoistva tverdykh rastvorov stannata bariya v titanate bariya. Zh Tekh Fiz 24:1375–1386Google Scholar
  20. 20.
    Xie J, Hao H, Liu HX et al (2016) Dielectric relaxation behavior and energy storage properties of Sn modified SrTiO3 based ceramics. Ceram Int 42:12796–12801CrossRefGoogle Scholar
  21. 21.
    Pu YP, Yao MT, Zhang L et al (2016) High energy storage density of 0.55Bi0.5Na0.5TiO3–0.45Ba0.85Ca0.15Ti0.9−xZr0.1SnxO3 ceramics. J Alloys Compd 687:689–695CrossRefGoogle Scholar
  22. 22.
    Ganesh I, Gupta AK, Kumar PP et al (2012) Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications. Mater Chem Phys 135:220–234CrossRefGoogle Scholar
  23. 23.
    Morris D, Dou Y, Rebane J, Mitchell CEJ, Egdell RG (2000) Photoemission and STM study of the electronic structure of Nb-doped TiO2. Phys Rev B Condens Matter Mater Phys 61:13445CrossRefGoogle Scholar
  24. 24.
    Zhong X, Zhang G, Qiu Y, Chen Z, Guo X (2013) Electrochemical migration of tin in thin electrolyte layer containing chloride ions. Corros Sci 74:71–82CrossRefGoogle Scholar
  25. 25.
    Gai Z, Cheng Z, Wang X et al (2014) A colossal dielectric constant of an amorphous TiO2:(Nb, In) film with low loss fabrication at room temperature. J Mater Chem C 2:6790–6795CrossRefGoogle Scholar
  26. 26.
    Cheng Y, Yi Z, Wang C (2017) Controllable fabrication of C/Sn and C/SnO/Sn composites as anode materials for high-performance lithium-ion batteries. Chem Eng J 330:1035–1043CrossRefGoogle Scholar
  27. 27.
    Ianculescu A, Berger D, Curecheriu LP, Drăgan N, Vasile E (2008) Properties of Ba1−xSrxTiO3 ceramics prepared by the modified-Pechini method. Ferroelectrics 369:22–34CrossRefGoogle Scholar
  28. 28.
    Filipic C, Hemberger J, Kutnjak Z, Levstik A, Loidl A (2001) Frequency denpendency of dielectric nonlinearity in PMN relaxor system. J Eur Ceram Soc 21:1323–1325CrossRefGoogle Scholar
  29. 29.
    Chen XL, Chen J, Ma DD, Fang L, Zhou HF (2015) Thermally stable BaTiO3–Bi(Mg2/3Nb1/3)O3 solid solution with high relative permittivity in a broad temperature usage range. J Am Ceram Soc 98:804–810CrossRefGoogle Scholar
  30. 30.
    Jin L, Huo R, Guo R et al (2016) Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl Mater Interfaces 8:31109CrossRefGoogle Scholar
  31. 31.
    Uchino K, Nomura S (1982) Exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectr Lett Sect 44:55–61CrossRefGoogle Scholar
  32. 32.
    Pilgrim SM, Sutherland AE, Winzer SR (1990) Diffuseness as a useful parameter for relaxor ceramics. J Am Ceram Soc 73:3122–3125CrossRefGoogle Scholar
  33. 33.
    Pan ZB, Yao LM, Zhai JW, Shen B et al (2016) Excellent energy density of polymer nanofibers induced by moderate interfacial area. J Mater Chem A 4(34):13259–13263CrossRefGoogle Scholar
  34. 34.
    Chauhan A, Patel S, Vaish R (2014) Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors. AIP Adv 4:087106CrossRefGoogle Scholar
  35. 35.
    Ren PR, Wang Q, Li SF et al (2017) Energy storage density and tunable dielectric properties of BaTi0.85Sn0.15O3/MgO composite ceramics prepared by SPS. J Eur Ceram Soc 37:1501–1507CrossRefGoogle Scholar
  36. 36.
    Gao F, Dong XL, Mao CL et al (2011) Energy-storage properties of 0.89(Bi0.5Na0.5)TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J Am Ceram Soc 94:4382–4386CrossRefGoogle Scholar
  37. 37.
    Liu ZC, Ren PR, Long CB, Wang X, Wan YH, Zhao GY (2017) Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J Alloys Compd. Google Scholar
  38. 38.
    Zheng DG, Zuo RZ (2017) Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3–BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range. J Eur Ceram Soc 37:413–418CrossRefGoogle Scholar
  39. 39.
    Wu YJ, Huang YH, Wang N, Li J, Fu MS, Chen XM (2017) Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics. J Eur Ceram Soc 37:2099–2104CrossRefGoogle Scholar
  40. 40.
    Liu BB, Wang XH, Zhang RX et al (2017) Energy storage properties of ultra fine-grained Ba0.4Sr0.6TiO3-based ceramics sintered at low temperature. J Alloys Compd 691:619–623CrossRefGoogle Scholar
  41. 41.
    Li Q, Wang J, Liu ZY, Dong GZ, Fan HQ (2016) Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3–0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics. J Mater Sci 51:1153–1160 CrossRefGoogle Scholar
  42. 42.
    Xu JW, Lu XP, Yang L et al (2017) Enhanced electrical energy storage properties in La doped (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics by addition of La2O3 and La(NO3)3. J Mater Sci 52:10062–10072 CrossRefGoogle Scholar
  43. 43.
    Jin L, Li F, Zhang S (2014) Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 97:1–27CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShaanxi University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations