Journal of Materials Science

, Volume 53, Issue 13, pp 9627–9634 | Cite as

Effect of interface defects on the magnetoresistance in Bi4Ti3O12/(La, Sr)Mn1−xO3 heterostructures

  • Haoliang Huang
  • Xiaofang Zhai
  • Jianlin Wang
  • Dechao Meng
  • Yu Yun
  • Chao Ma
  • Xusheng Zheng
  • Lihui Wu
  • Haibin Pan
  • Zhengping Fu
  • Yalin Lu
Electronic materials
  • 59 Downloads

Abstract

Heterostructure between layered ferroelectric oxide Bi4Ti3O12 and perovskite (La, Sr)Mn1−xO3 is highly interesting due to the need to explore new types of functional heterostructures. However, fabricating such heterostructures with high quality is challenging because of the non-isostructural crystalline symmetry of the two constituents. In this work, we constructed two different heterostructures, in which the Bi4Ti3O12 layers with precisely controlled thicknesses were deposited on insulating La0.7Sr0.3Mn0.81O3 and conducting La0.7Sr0.3MnO3 bottom layers, respectively. Results of cross section transmission electron microscopy identified rough interfaces between insulating (La, Sr)Mn1−xO3 and Bi4Ti3O12, while sharp interfaces between metallic (La, Sr)Mn1−xO3 and Bi4Ti3O12. In the former, levels of intermixing and charge leaking are strongly dependent on the thickness of the Bi4Ti3O12 capping layer, which induces a capping-layer-thickness-dependent magnetoresistance. These results demonstrated that the interfacial defect is a critical factor for designing functional heterostructures composed of layered oxide and perovskite oxide.

Notes

Acknowledgements

The authors acknowledge the RBS help from Prof. Donglai Feng and Dr. Rui Peng in Fudan University. This work was supported by the National Science Foundation of China (Grant Nos. 11504358 and 11574287), the National Natural Science Foundation of China (51627901), the National Key R&D Program of China (2016YFA0401004), the National Key R&D Program of China (2017YFA0402900) and the Hefei Science Center CAS (2015HSC-SRG052). The authors thank beamline BL08U1A and BL14 B1 of SSRF for providing the beam time.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_2256_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2698 kb)

References

  1. 1.
    Tian H, Verbeeck J, Brück S, Paul M, Kufer D, Sing M, Claessen R, Van Tendeloo G (2014) Interface-induced modulation of charge and polarization in thin film Fe3O4. Adv Mater 26:461–465CrossRefGoogle Scholar
  2. 2.
    Yu P, Chu YH, Ramesh R (2012) Oxide interfaces: pathways to novel phenomena. Mater Today 15:320–327CrossRefGoogle Scholar
  3. 3.
    Chakhalian J, Freeland JW, Habermeier HU, Cristiani G, Khaliullin G, van Veenendaal M, Keimer B (2007) Orbital reconstruction and covalent bonding at an oxide interface. Science 318:1114–1117CrossRefGoogle Scholar
  4. 4.
    Zhai XF, Cheng L, Liu Y, Schlepütz CM, Dong S, Li H, Zhang XQ, Chu SQ, Zheng LR, Zhang J, Zhao A, Hong H, Bhattacharya A, Eckstein JN, Zeng C (2014) Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices. Nat Commun 5:4283CrossRefGoogle Scholar
  5. 5.
    Bhattacharya A, May SJ (2014) Magnetic oxide heterostructures. Annu Rev Mater Res 44:65–90CrossRefGoogle Scholar
  6. 6.
    Wu SM, Cybart SA, Yu P, Rossell MD, Zhang JX, Ramesh R, Dynes RC (2010) Reversible electric control of exchange bias in a multiferroic field-effect device. Nat Mater 9:756–761CrossRefGoogle Scholar
  7. 7.
    Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–766CrossRefGoogle Scholar
  8. 8.
    Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur ND, Fusil S, Bouzehouane K, Barthélémy A (2010) Ferroelectric control of spin polarization. Science 327:1106–1110CrossRefGoogle Scholar
  9. 9.
    Yin YW, Burton JD, Kim Y-M, Borisevich AY, Pennycook SJ, Yang SM, Noh TW, Gruverman A, Li XG, Tsymbal EY, Li Q (2013) Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nat Mater 12:397–402CrossRefGoogle Scholar
  10. 10.
    Molegraaf HJA, Hoffman J, Vaz CAF, Gariglio S, van der Marel D, Ahn CH, Triscone JM (2009) Magnetoelectric effects in complex oxides with competing ground states. Adv Mater 21:3470–3474CrossRefGoogle Scholar
  11. 11.
    Vaz CAF, Hoffman J, Segal Y, Reiner JW, Grober RD, Zhang Z, Ahn CH, Walker FJ (2010) Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys Rev Lett 104:127202CrossRefGoogle Scholar
  12. 12.
    Jiang L, Choi WS, Jeen H, Dong S, Kim Y, Han MG, Zhu YM, Kalinin SV, Dagotto E, Egami T, Lee HN (2013) Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures. Nano Lett 13:5837–5843CrossRefGoogle Scholar
  13. 13.
    Burton JD, Tsymbal EY (2009) Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys Rev B 80:174406CrossRefGoogle Scholar
  14. 14.
    Duan CG, Jaswal SS, Tsymbal EY (2006) Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys Rev Lett 97:047201CrossRefGoogle Scholar
  15. 15.
    Spurgeon SR, Sloppy JD, Kepaptsoglou D, Balachandran PV, Nejati S, Karthik J, Damodaran AR, Johnson CL, Ambaye H, Goyette R, Lauter V, Ramasse QM, Idrobo JC, Lau KKS, Lofland SE Jr, Rondinelli JM, Martin LW, Taheri ML (2014) Thickness-dependent crossover from charge-to strain-mediated magnetoelectric coupling in ferromagnetic/piezoelectric oxide heterostructures. ACS Nano 8:894–903CrossRefGoogle Scholar
  16. 16.
    Kourkoutis LF, Song JH, Hwang HY, Muller DA (2010) Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers. PNAS 107:11682–11685CrossRefGoogle Scholar
  17. 17.
    Wang C, Ke X, Wang J, Liang R, Luo Z, Tian Y, Yi D, Zhang Q, Wang J, Han X, Tendeloo GV, Chen L, Nan C (2016) Ferroelastic switching in a layered-perovskite thin film. Nat Commun 7:10636CrossRefGoogle Scholar
  18. 18.
    Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W (1999) Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401:682–684CrossRefGoogle Scholar
  19. 19.
    Lee HN, Hesse D, Zakharov N, Gosele U (2002) Ferroelectric Bi3.25La0.75Ti3O12 films of uniform a-axis orientation on silicon substrates. Science 296:2006–2009CrossRefGoogle Scholar
  20. 20.
    Mao XY, Wang W, Chen XB, Lu YL (2009) Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics. Appl Phys Lett 95:082901CrossRefGoogle Scholar
  21. 21.
    Wang J, Huang H, Liu C, Fu Z, Zhai X, Peng R, Lu Y (2015) Platinum-induced structural collapse in layered oxide polycrystalline films. Appl Phys Lett 106:132903CrossRefGoogle Scholar
  22. 22.
    Wang JL, Fu ZP, Peng RR, Liu M, Sun SJ, Huang HL, Li L, Knized RJ, Lu YL (2015) Low magnetic field response single-phase multiferroics under high temperature. Mater Horiz 2:232–236CrossRefGoogle Scholar
  23. 23.
    Pan XQ, Jiang JC, Theis CD, Schlom DG (2003) Domain structure of epitaxial Bi4Ti3O12 thin films grown on (001) SrTiO3 substrates. Appl Phys Lett 83:2315–2317CrossRefGoogle Scholar
  24. 24.
    Radaelli PG, Iannone G, Marezio M, Hwang HY, Cheong S-W, Jorgensen JD, Argyriou DN (1997) Structural effects on the magnetic and transport properties of perovskite A1−x A′xMnO3 (x = 0.25, 0.30). Phys Rev B 56:8265–8276CrossRefGoogle Scholar
  25. 25.
    Yun Y, Ma C, Zhai X, Huang H, Meng D, Wang J, Fu Z, Peng R, Brown GJ, Lu Y (2015) Interface engineering in epitaxial growth of layered oxides via a conducting layer insertion. Appl Phys Lett 107:011602CrossRefGoogle Scholar
  26. 26.
    Barriocanal JG, Cezar JC, Bruno FY, Thakur P, Brookes NB, Utfeld C, Calzada AR, Giblin SR, Taylor JW, Duffy JA, Dugdale SB, Nakamura T, Kodama K, Leon C, Okamoto S, Santamaria J (2010) Spin and orbital Ti magnetism at LaMnO3/SrTiO3 interfaces. Nat Commun 1:82Google Scholar
  27. 27.
    Gilbert B, Frazer BH, Belz A, Conrad PG, Nealson KH, Haskel D, Lang JC, Srajer G, De Stasio G (2003) Multiple scattering calculations of bonding and X-ray absorption spectroscopy of manganese oxides. J Phys Chem A 107:2839–2847CrossRefGoogle Scholar
  28. 28.
    Hossain MA, Hu Z, Haverkort MW, Burnus T, Chang CF, Klein S, Denlinger JD, Lin H-J, Chen CT, Mathieu R, Kaneko Y, Tokura Y, Satow S, Yoshida Y, Takagi H, Tanaka A, Elfimov IS, Sawatzky GA, Tjeng LH, Damascelli A (2008) Crystal-field level inversion in lightly Mn-doped Sr3Ru2O7. Phys Rev Lett 101:016404CrossRefGoogle Scholar
  29. 29.
    Grisolia MN, Varignon J, Sanchez-Santolino G, Arora A, Valencia S, Varela M, Abrudan R, Weschke E, Schierle E, Rault JE, Rueff J-P, Barthélémy A, Santamaria J, Bibes M (2016) Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces. Nat Phys 12:484–492CrossRefGoogle Scholar
  30. 30.
    Zhai X, Mohapatra CS, Shah AB, Zuo J, Eckstein JN (2010) New optical absorption bands in atomic-layer superlattices. Adv Mater 22:1136–1139CrossRefGoogle Scholar
  31. 31.
    Liao ZL, Huijben M, Koster G, Rijnders G (2014) Uniaxial magnetic anisotropy induced low field anomalous anisotropic magnetoresistance in manganite thin films. APL Mater 2:096112CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  3. 3.CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  4. 4.Synergetic Innovation Center of Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  5. 5.Microsystem and Terahertz Research CenterCAEPChengduPeople’s Republic of China
  6. 6.International Center for Quantum MaterialsPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations