The formation of Fe–Ga–In nanocomposite particles using mechanochemical interaction of Fe with the Ga–In eutectic

  • Tatiana Kiseleva
  • Eduard Levin
  • Alla Novakova
  • Alexander Ilyushin
  • Tatiana Grigoryeva
  • Vladimir Šepelák
Mechanochemical Synthesis
  • 27 Downloads

Abstract

Mechanochemical interaction of Fe powder with the liquid Ga–In eutectic in the Fe-rich concentration corner of the Fe–Ga–In phase diagram was studied and compared with binary Fe–Ga and Fe–In specimens. Slow formation of diluted solid solutions in the Fe–In system was confirmed. In the Fe–Ga system, the dominant concentrated A2 solid solution is formed with Heff = 236 kOe, accompanied by ordered D03 and L12 phases. The Fe–Ga–In system features a stationary equilibrium between the concentrated A2 phase and D03 in the iron matrix.

Notes

Acknowledgements

The authors wish to acknowledge the financial support from RFBR Grant 13-02-0838 and Moscow University Program of Development up to 2020.

Supplementary material

10853_2018_2227_MOESM1_ESM.pdf (308 kb)
Supplementary material 1 (PDF 307 kb)

References

  1. 1.
    Kharisov BI, Rasika Dias HV, Kharissova OV, Manuel Jimenez-Perez V, Olvera Perez B, Munoz Flores B (2012) Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv 2(25):9325–9358.  https://doi.org/10.1039/C2RA20812A CrossRefGoogle Scholar
  2. 2.
    Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501.  https://doi.org/10.1002/smll.200500006 CrossRefGoogle Scholar
  3. 3.
    Lomovskii OI (ed) (2010) Mechanocomposites-precursors for production materials with new properties. Sibir. Otd. Ross. Akad. Nauk, Novosibirsk (in Russian). https://books.google.ru/books?id=sSIBDgAAQBAJ&dq=978-5-7692-1108-9
  4. 4.
    Kiseleva T, Zholudev S, Novakova A, Grigoryeva T (2016) The enhanced magnetodeformational effect in Galfenol/polyurethane nanocomposites by the arrangement of particle chains. Compos Struct 138:12–16.  https://doi.org/10.1016/j.compstruct.2015.11.030 CrossRefGoogle Scholar
  5. 5.
    Atulasimha J, Flatau AB (2011) A review of magnetostrictive iron–gallium alloys. Smart Mater Struct 20:043001.  https://doi.org/10.1088/0964-1726/20/4/043001 CrossRefGoogle Scholar
  6. 6.
    Petculescu G, Wu R, McQueeney R (2012) Magnetoelasticity of bcc Fe–Ga alloys. In: Buschow KHJ (ed) Handbook of magnetic materials, vol 20. Elsevier, Amsterdam, pp 123–226.  https://doi.org/10.1016/B978-0-444-56371-2.00003-9 Google Scholar
  7. 7.
    Dai L, Cullen J, Wuttig M, Lograsso T, Quandt E (2003) Magnetism, elasticity, and magnetostriction of FeCoGa alloys. J Appl Phys 93(10):8627–8629.  https://doi.org/10.1063/1.1555980 CrossRefGoogle Scholar
  8. 8.
    Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL (2000) Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys. IEEE Trans Magn 36(5):3238–3240.  https://doi.org/10.1109/20.908752 CrossRefGoogle Scholar
  9. 9.
    Petculescu G, Ledet KL, Huang M, Lograsso TA, Zhang YN, Wu RQ, Wun-Fogle M, Restorff JB, Clark AE, Hathaway KB (2011) Magnetostriction, elasticity, and D03 phase stability in Fe–Ga and Fe–Ga–Ge alloys. J Appl Phys 109(7):07A904.  https://doi.org/10.1063/1.3535444 CrossRefGoogle Scholar
  10. 10.
    Restorff JB, Wun-Fogle M, Hathaway KB, Clark AE, Lograsso TA, Petculescu G (2012) Tetragonal magnetostriction and magnetoelastic coupling in Fe–Al, Fe–Ga, Fe–Ge, Fe–Si, Fe–Ga–Al, and Fe–Ga–Ge alloys. J Appl Phys 111(2):023905.  https://doi.org/10.1063/1.3674318 CrossRefGoogle Scholar
  11. 11.
    Lograsso TA, Summers EM (2006) Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction. Mater Sci Eng A 416(1–2):240–245.  https://doi.org/10.1016/j.msea.2005.10.035 CrossRefGoogle Scholar
  12. 12.
    Borrego JM, Blázquez JS, Conde CF, Conde A, Roth S (2007) Structural ordering and magnetic properties of arc-melted FeGa alloys. Intermetallics 15(2):193–200.  https://doi.org/10.1016/j.intermet.2006.05.007 CrossRefGoogle Scholar
  13. 13.
    Cao H, Bai F, Li J, Viehland DD, Lograsso TA, Gehring PM (2008) Structural studies of decomposition in Fe–x at.%Ga alloys. J Alloys Compd 465(1–2):244–249.  https://doi.org/10.1016/j.jallcom.2007.10.080 CrossRefGoogle Scholar
  14. 14.
    Javed A, Morley NA, Szumiata T, Gibbs MRJ (2011) A comparative study of the microstructural and magnetic properties of textured thin polycrystalline Fe100−xGax (10 ≤ x ≤ 35) films. Appl Surf Sci 257(14):5977–5983.  https://doi.org/10.1016/j.apsusc.2011.01.079 CrossRefGoogle Scholar
  15. 15.
    Butera A, Weston JL, Barnard JA (2004) Ferromagnetic resonance of epitaxial thin films Fe81Ga19(110) thin films. J Magn Magn Mater 284:17–25.  https://doi.org/10.1016/j.jmmm.2004.06.015 CrossRefGoogle Scholar
  16. 16.
    Iselt D, Gaitzsch U, Oswald S, Fähler S, Schultz L, Schlörb H (2011) Electrodeposition and characterization of Fe80Ga20 alloy films. Electrochim Acta 56(14):5178–5183.  https://doi.org/10.1016/j.electacta.2011.03.046 CrossRefGoogle Scholar
  17. 17.
    Reddy KSM, Estrine EC, Lim D-H, Smyrl WH, Stadler BJH (2012) Controlled electrochemical deposition of magnetostrictive Fe1−xGax alloys. Electrochem Commun 18:127–130.  https://doi.org/10.1016/j.elecom.2012.02.039 CrossRefGoogle Scholar
  18. 18.
    Ranchal R, Fin S, Bisero D (2015) Magnetic microstructures in electrodeposited Fe1−xGax thin films (15 ≤ x ≤ 22 at.%). J Phys D Appl Phys 48(7):075001.  https://doi.org/10.1088/0022-3727/48/7/075001 CrossRefGoogle Scholar
  19. 19.
    Gaudet JM, Hatchard TD, Farrell SP, Dunlap RA (2008) Properties of Fe–Ga based powders prepared by mechanical alloying. J Magn Magn Mater 320(6):821–829.  https://doi.org/10.1016/j.jmmm.2007.08.029 CrossRefGoogle Scholar
  20. 20.
    Grigor’eva TF, Kiseleva TY, Kovaleva SA, Novakova AA, Tsybulya SV, Barinova AP, Lyakhov NZ (2012) Study of the products of interaction between iron and gallium during mechanical activation. Phys Metals Metallogr 113(6):575–582.  https://doi.org/10.1134/s0031918x12060075 CrossRefGoogle Scholar
  21. 21.
    Boldyrev VV (2006) Mechanochemistry and mechanical activation of solids. Russ Chem Rev 75(3):177–189.  https://doi.org/10.1070/RC2006v075n03ABEH001205 CrossRefGoogle Scholar
  22. 22.
    Grigorieva TF, Barinova AP, Lyakhov NZ (2003) Mechanosynthesis of nanocomposites. J Nanopart Res 5(5–6):439–453.  https://doi.org/10.1023/B:NANO.0000006093.26430.3b CrossRefGoogle Scholar
  23. 23.
    Lyakhov N, Grigorieva T, Barinova A, Lomayeva S, Yelsukov E, Ulyanov A (2004) Nanosized mechanocomposites and solid solution in immiscible metal systems. J Mater Sci 39(16–17):5421–5423.  https://doi.org/10.1023/B:JMSC.0000039258.56606.55 CrossRefGoogle Scholar
  24. 24.
    Kiseleva TY, Novakova AA, Grigorieva TF, Barinova AP (2004) Iron and indium interactions during mechanical attrition. J Alloys Compd 383(1–2):94–97.  https://doi.org/10.1016/j.jallcom.2004.04.015 CrossRefGoogle Scholar
  25. 25.
    Novakova AA, Grigorieva TF, Barinova AP, Kiseleva TY, Lyakhov NZ (2007) Fe (In) solid solution formation during mechanical attrition. J Alloys Compd 434–435:455–458.  https://doi.org/10.1016/j.jallcom.2006.08.102 CrossRefGoogle Scholar
  26. 26.
    Kiseleva TY, Levin EE, Novakova AA, Kovaleva SA, Grigorieva TF, Barinova AP, Lyakhov NZ (2011) Interaction between iron and liquid gallium in the course of intensive mechanical activation. In: Tenth Russian-Israeli Bi-national workshop “The optimization of the composition, structure and properties of metals, oxides, composites, nano and amorphous materials”, Jerusalem, 20–23 June 2011. pp 1–9Google Scholar
  27. 27.
    Grigorieva TF, Barinova AP, Lyakhov NZ (2001) Mechanochemical synthesis of intermetallic compounds. Russ Chem Rev 70(1):45–63.  https://doi.org/10.1070/RC2001v070n01ABEH000598 CrossRefGoogle Scholar
  28. 28.
    Grigoreva TF, Ancharov AI, Barinova AP, Tsybulya SV, Lyakhov NZ (2009) Structural transformations upon the mechanochemical interaction between solid and liquid metals. Phys Metals Metallogr 107(5):457–465.  https://doi.org/10.1134/S0031918X09050068 CrossRefGoogle Scholar
  29. 29.
    Grigoreva TF, Ancharov AI, Pindyurin VF, Barinova AP, Boldyrev VV (2008) Phase transformation sequence during interaction mechanochemically synthesized solid solution with liquid eutectics. Rev Adv Mater Sci 18(8):716–719Google Scholar
  30. 30.
    Glickman EE (2000) Mechanism of liquid metal embrittlement by simple experiments: from atomistics to life-time. In: Lépinoux J, Mazière D, Pontkis V, Saada G (eds) Multiscale phenomena in plasticity: from experiments to phenomenology, modelling and materials engineering, vol 367. Springer, Dordrecht, pp 383–402.  https://doi.org/10.1007/978-94-011-4048-5_30 CrossRefGoogle Scholar
  31. 31.
    Rabkin E (2000) Grain boundary embrittlement by liquid metals. In: Lépinoux J, Mazière D, Pontkis V, Saada G (eds) Multiscale phenomena in plasticity: from experiments to phenomenology, modelling and materials engineering, vol 367. Springer, Dordrecht, pp 403–414.  https://doi.org/10.1007/978-94-011-4048-5_31 CrossRefGoogle Scholar
  32. 32.
    Rusakov VS, Chistyakova NI (1992) Mossbauer program complex MSTools. In: Latin American conference on the application of the Mössbauer effect (LACAME’92), Argentina, 5–9, October, 1992, pp 7–3Google Scholar
  33. 33.
    Rusakov VS, Kadyrzhanov KK (2005) Mössbauer spectroscopy of locally inhomogeneous systems. Hyperfine Interact 164(1–4):87–97.  https://doi.org/10.1007/s10751-006-9236-2 Google Scholar
  34. 34.
    Wertheim GK, Jaccarino V, Wernick JH, Buchanan DNE (1964) Range of the exchange interaction in iron alloys. Phys Rev Lett 12(1):24–27.  https://doi.org/10.1103/PhysRevLett.12.24 CrossRefGoogle Scholar
  35. 35.
    ICDD PDF-2 (2017) http://www.icdd.com/products/pdf2.htm. Accessed November 2017
  36. 36.
    Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2(2):65–71.  https://doi.org/10.1107/S0021889869006558 CrossRefGoogle Scholar
  37. 37.
    Solovyov L (2004) Full-profile refinement by derivative difference minimization. J Appl Cryst 37(5):743–749.  https://doi.org/10.1107/S0021889804015638 CrossRefGoogle Scholar
  38. 38.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675.  https://doi.org/10.1038/nmeth.2089 CrossRefGoogle Scholar
  39. 39.
    Okamoto H (2004) Fe–Ga (iron-gallium). J Phase Equilib Diffus 25(1):100.  https://doi.org/10.1007/s11669-004-0187-5 CrossRefGoogle Scholar
  40. 40.
    Okamoto H (1990) The Fe–In (iron–indium) system. Bull Alloy Phase Diagrams 11(2):143–146.  https://doi.org/10.1007/BF02841698 CrossRefGoogle Scholar
  41. 41.
    Anderson TJ, Ansara I (1991) The Ga–In (gallium–indium) system. J Phase Equilib 12(1):64–72.  https://doi.org/10.1007/BF02663677 CrossRefGoogle Scholar
  42. 42.
    Lima-de-Faria J (2002) Structural classification and notation. In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds—principle and practice, vol 3: Progress. Wiley, Chichester, pp 3–20.  https://doi.org/10.1002/0470845856.ch1 CrossRefGoogle Scholar
  43. 43.
    Khmelevska T, Khmelevskyi S, Mohn P (2008) Magnetism and structural ordering on a bcc lattice for highly magnetostrictive Fe–Ga alloys: a coherent potential approximation study. J Appl Phys 103(7):073911.  https://doi.org/10.1063/1.2903071 CrossRefGoogle Scholar
  44. 44.
    Miedema AR, de Boer FR, Boom R (1977) Model predictions for the enthalpy of formation of transition metal alloys. Calphad 1(4):341–359.  https://doi.org/10.1016/0364-5916(77)90011-6 CrossRefGoogle Scholar
  45. 45.
    Egerton RF (2016) Physical principles of electron microscopy, 2nd edn. Springer, Cham.  https://doi.org/10.1007/978-3-319-39877-8 CrossRefGoogle Scholar
  46. 46.
    König R, Müller S, Dinnebier RE, Müller P, Ribbens A, Hwang J, Liebscher R, Etter M, Pistidda C (2017) The crystal structures of carbonyl iron powder—revised using in situ synchrotron XRPD. Z Kristallogr 232(12):835–842.  https://doi.org/10.1515/zkri-2017-2067 Google Scholar
  47. 47.
    Mathalone Z, Ron M, Pipman J, Niedzwiedz S (1971) Mössbauer characteristics of ε, χ, and θ iron carbides. J Appl Phys 42(2):687–695.  https://doi.org/10.1063/1.1660082 CrossRefGoogle Scholar
  48. 48.
    O’Donnell K, Rao X-L, Laird G, Coey JMD (1996) Metastable iron nitrides by mechanical alloying. Phys Status Solidi A 153(1):223–231.  https://doi.org/10.1002/pssa.2211530122 CrossRefGoogle Scholar
  49. 49.
    Palacheva VV, Emdadi A, Emeis F, Bobrikov IA, Balagurov AM, Divinski SV, Wilde G, Golovin IS (2017) Phase transitions as a tool for tailoring magnetostriction in intrinsic Fe–Ga composites. Acta Mater 130:229–239.  https://doi.org/10.1016/j.actamat.2017.03.049 CrossRefGoogle Scholar
  50. 50.
    Swanson HE, Fuyat RK, Ugrinic GM (1956) Standard X-Ray diffraction powder patterns, vol IV. National Bureau of Standards Circular 539. U. S. Dept. of Commerce, National Bureau of Standards, WashingtonGoogle Scholar
  51. 51.
    Nishino Y, Matsuo M, Asano S, Kawamiya N (1991) Stability of the DO3 phase in (Fe1−xMx)3Ga (M; 3d transition metals). Scr Metall Mater 25(10):2291–2296.  https://doi.org/10.1016/0956-716X(91)90017-U CrossRefGoogle Scholar
  52. 52.
    Gleiter H (1992) Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct Mater 1:1–19.  https://doi.org/10.1016/0965-9773(92)90045-Y CrossRefGoogle Scholar
  53. 53.
    Kim HS, Estrin Y, Bush MB (2000) Plastic deformation behaviour of fine-grained materials. Acta Mater 48(2):493–504.  https://doi.org/10.1016/S1359-6454(99)00353-5 CrossRefGoogle Scholar
  54. 54.
    McCormick PG, Froes FH (1998) The fundamentals of mechanochemical processing. JOM 50(11):61–65.  https://doi.org/10.1007/s11837-998-0290-x CrossRefGoogle Scholar
  55. 55.
    Dunlap RA, McGraw JD, Farrell SP (2006) A Mössbauer effect study of structural ordering in rapidly quenched Fe–Ga alloys. J Magn Magn Mater 305(2):315–320.  https://doi.org/10.1016/j.jmmm.2006.01.020 CrossRefGoogle Scholar
  56. 56.
    Dunlap RA, Deschamps NC, Mar RE, Farrell SP (2006) Mössbauer effect studies of Fe100−xGax films prepared by combinatorial methods. J Phys Condens Matter 18(20):4907–4920.  https://doi.org/10.1088/0953-8984/18/20/015 CrossRefGoogle Scholar
  57. 57.
    Kawamiya N, Adachi K, Nakamura Y (1972) Magnetic properties and Mössabauer investigations of Fe–Ga Alloys. J Phys Soc Jpn 33(5):1318–1327.  https://doi.org/10.1143/JPSJ.33.1318 CrossRefGoogle Scholar
  58. 58.
    Newkirk LR, Tsuei CC (1971) Mössbauer study of hyperfine magnetic interactions in Fe–Ga solid solutions. Phys Rev B 4(11):4046.  https://doi.org/10.1103/PhysRevB.4.4046 CrossRefGoogle Scholar
  59. 59.
    Kawamiya N, Adachi K (1982) Magnetic structure of Fe3Ga studied by neutron diffraction. Trans Jpn Inst Met 23(6):296–302.  https://doi.org/10.2320/matertrans1960.23.296 CrossRefGoogle Scholar
  60. 60.
    Preston RS, Hanna SS, Heberle J (1962) Mössbauer effect in metallic iron. Phys Rev 128(5):2207.  https://doi.org/10.1103/PhysRev.128.2207 CrossRefGoogle Scholar
  61. 61.
    Del Bianco L, Hernando A, Bonetti E, Navarro E (1997) Grain-boundary structure and magnetic behavior in nanocrystalline ball-milled iron. Phys Rev B 56(14):8894–8901.  https://doi.org/10.1103/PhysRevB.56.8894 CrossRefGoogle Scholar
  62. 62.
    Vincze I, Campbell A (1973) Mössbauer measurements in iron based alloys with transition metals. J Phys F Metal Phys 3:647–663.  https://doi.org/10.1088/0305-4608/3/3/023 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of ChemistryM.V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Institute of Solid State Chemistry and Mechanochemistry SB RASNovosibirskRussia
  4. 4.Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  5. 5.Institute of Physics, Faculty of Mining and GeologyVŠB–Technical University of OstravaOstravaCzech Republic

Personalised recommendations