The formation of Fe–Ga–In nanocomposite particles using mechanochemical interaction of Fe with the Ga–In eutectic
Mechanochemical Synthesis
First Online:
Received:
Accepted:
- 27 Downloads
Abstract
Mechanochemical interaction of Fe powder with the liquid Ga–In eutectic in the Fe-rich concentration corner of the Fe–Ga–In phase diagram was studied and compared with binary Fe–Ga and Fe–In specimens. Slow formation of diluted solid solutions in the Fe–In system was confirmed. In the Fe–Ga system, the dominant concentrated A2 solid solution is formed with Heff = 236 kOe, accompanied by ordered D03 and L12 phases. The Fe–Ga–In system features a stationary equilibrium between the concentrated A2 phase and D03 in the iron matrix.
Notes
Acknowledgements
The authors wish to acknowledge the financial support from RFBR Grant 13-02-0838 and Moscow University Program of Development up to 2020.
Supplementary material
References
- 1.Kharisov BI, Rasika Dias HV, Kharissova OV, Manuel Jimenez-Perez V, Olvera Perez B, Munoz Flores B (2012) Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv 2(25):9325–9358. https://doi.org/10.1039/C2RA20812A CrossRefGoogle Scholar
- 2.Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501. https://doi.org/10.1002/smll.200500006 CrossRefGoogle Scholar
- 3.Lomovskii OI (ed) (2010) Mechanocomposites-precursors for production materials with new properties. Sibir. Otd. Ross. Akad. Nauk, Novosibirsk (in Russian). https://books.google.ru/books?id=sSIBDgAAQBAJ&dq=978-5-7692-1108-9
- 4.Kiseleva T, Zholudev S, Novakova A, Grigoryeva T (2016) The enhanced magnetodeformational effect in Galfenol/polyurethane nanocomposites by the arrangement of particle chains. Compos Struct 138:12–16. https://doi.org/10.1016/j.compstruct.2015.11.030 CrossRefGoogle Scholar
- 5.Atulasimha J, Flatau AB (2011) A review of magnetostrictive iron–gallium alloys. Smart Mater Struct 20:043001. https://doi.org/10.1088/0964-1726/20/4/043001 CrossRefGoogle Scholar
- 6.Petculescu G, Wu R, McQueeney R (2012) Magnetoelasticity of bcc Fe–Ga alloys. In: Buschow KHJ (ed) Handbook of magnetic materials, vol 20. Elsevier, Amsterdam, pp 123–226. https://doi.org/10.1016/B978-0-444-56371-2.00003-9 Google Scholar
- 7.Dai L, Cullen J, Wuttig M, Lograsso T, Quandt E (2003) Magnetism, elasticity, and magnetostriction of FeCoGa alloys. J Appl Phys 93(10):8627–8629. https://doi.org/10.1063/1.1555980 CrossRefGoogle Scholar
- 8.Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL (2000) Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys. IEEE Trans Magn 36(5):3238–3240. https://doi.org/10.1109/20.908752 CrossRefGoogle Scholar
- 9.Petculescu G, Ledet KL, Huang M, Lograsso TA, Zhang YN, Wu RQ, Wun-Fogle M, Restorff JB, Clark AE, Hathaway KB (2011) Magnetostriction, elasticity, and D03 phase stability in Fe–Ga and Fe–Ga–Ge alloys. J Appl Phys 109(7):07A904. https://doi.org/10.1063/1.3535444 CrossRefGoogle Scholar
- 10.Restorff JB, Wun-Fogle M, Hathaway KB, Clark AE, Lograsso TA, Petculescu G (2012) Tetragonal magnetostriction and magnetoelastic coupling in Fe–Al, Fe–Ga, Fe–Ge, Fe–Si, Fe–Ga–Al, and Fe–Ga–Ge alloys. J Appl Phys 111(2):023905. https://doi.org/10.1063/1.3674318 CrossRefGoogle Scholar
- 11.Lograsso TA, Summers EM (2006) Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction. Mater Sci Eng A 416(1–2):240–245. https://doi.org/10.1016/j.msea.2005.10.035 CrossRefGoogle Scholar
- 12.Borrego JM, Blázquez JS, Conde CF, Conde A, Roth S (2007) Structural ordering and magnetic properties of arc-melted FeGa alloys. Intermetallics 15(2):193–200. https://doi.org/10.1016/j.intermet.2006.05.007 CrossRefGoogle Scholar
- 13.Cao H, Bai F, Li J, Viehland DD, Lograsso TA, Gehring PM (2008) Structural studies of decomposition in Fe–x at.%Ga alloys. J Alloys Compd 465(1–2):244–249. https://doi.org/10.1016/j.jallcom.2007.10.080 CrossRefGoogle Scholar
- 14.Javed A, Morley NA, Szumiata T, Gibbs MRJ (2011) A comparative study of the microstructural and magnetic properties of textured thin polycrystalline Fe100−xGax (10 ≤ x ≤ 35) films. Appl Surf Sci 257(14):5977–5983. https://doi.org/10.1016/j.apsusc.2011.01.079 CrossRefGoogle Scholar
- 15.Butera A, Weston JL, Barnard JA (2004) Ferromagnetic resonance of epitaxial thin films Fe81Ga19(110) thin films. J Magn Magn Mater 284:17–25. https://doi.org/10.1016/j.jmmm.2004.06.015 CrossRefGoogle Scholar
- 16.Iselt D, Gaitzsch U, Oswald S, Fähler S, Schultz L, Schlörb H (2011) Electrodeposition and characterization of Fe80Ga20 alloy films. Electrochim Acta 56(14):5178–5183. https://doi.org/10.1016/j.electacta.2011.03.046 CrossRefGoogle Scholar
- 17.Reddy KSM, Estrine EC, Lim D-H, Smyrl WH, Stadler BJH (2012) Controlled electrochemical deposition of magnetostrictive Fe1−xGax alloys. Electrochem Commun 18:127–130. https://doi.org/10.1016/j.elecom.2012.02.039 CrossRefGoogle Scholar
- 18.Ranchal R, Fin S, Bisero D (2015) Magnetic microstructures in electrodeposited Fe1−xGax thin films (15 ≤ x ≤ 22 at.%). J Phys D Appl Phys 48(7):075001. https://doi.org/10.1088/0022-3727/48/7/075001 CrossRefGoogle Scholar
- 19.Gaudet JM, Hatchard TD, Farrell SP, Dunlap RA (2008) Properties of Fe–Ga based powders prepared by mechanical alloying. J Magn Magn Mater 320(6):821–829. https://doi.org/10.1016/j.jmmm.2007.08.029 CrossRefGoogle Scholar
- 20.Grigor’eva TF, Kiseleva TY, Kovaleva SA, Novakova AA, Tsybulya SV, Barinova AP, Lyakhov NZ (2012) Study of the products of interaction between iron and gallium during mechanical activation. Phys Metals Metallogr 113(6):575–582. https://doi.org/10.1134/s0031918x12060075 CrossRefGoogle Scholar
- 21.Boldyrev VV (2006) Mechanochemistry and mechanical activation of solids. Russ Chem Rev 75(3):177–189. https://doi.org/10.1070/RC2006v075n03ABEH001205 CrossRefGoogle Scholar
- 22.Grigorieva TF, Barinova AP, Lyakhov NZ (2003) Mechanosynthesis of nanocomposites. J Nanopart Res 5(5–6):439–453. https://doi.org/10.1023/B:NANO.0000006093.26430.3b CrossRefGoogle Scholar
- 23.Lyakhov N, Grigorieva T, Barinova A, Lomayeva S, Yelsukov E, Ulyanov A (2004) Nanosized mechanocomposites and solid solution in immiscible metal systems. J Mater Sci 39(16–17):5421–5423. https://doi.org/10.1023/B:JMSC.0000039258.56606.55 CrossRefGoogle Scholar
- 24.Kiseleva TY, Novakova AA, Grigorieva TF, Barinova AP (2004) Iron and indium interactions during mechanical attrition. J Alloys Compd 383(1–2):94–97. https://doi.org/10.1016/j.jallcom.2004.04.015 CrossRefGoogle Scholar
- 25.Novakova AA, Grigorieva TF, Barinova AP, Kiseleva TY, Lyakhov NZ (2007) Fe (In) solid solution formation during mechanical attrition. J Alloys Compd 434–435:455–458. https://doi.org/10.1016/j.jallcom.2006.08.102 CrossRefGoogle Scholar
- 26.Kiseleva TY, Levin EE, Novakova AA, Kovaleva SA, Grigorieva TF, Barinova AP, Lyakhov NZ (2011) Interaction between iron and liquid gallium in the course of intensive mechanical activation. In: Tenth Russian-Israeli Bi-national workshop “The optimization of the composition, structure and properties of metals, oxides, composites, nano and amorphous materials”, Jerusalem, 20–23 June 2011. pp 1–9Google Scholar
- 27.Grigorieva TF, Barinova AP, Lyakhov NZ (2001) Mechanochemical synthesis of intermetallic compounds. Russ Chem Rev 70(1):45–63. https://doi.org/10.1070/RC2001v070n01ABEH000598 CrossRefGoogle Scholar
- 28.Grigoreva TF, Ancharov AI, Barinova AP, Tsybulya SV, Lyakhov NZ (2009) Structural transformations upon the mechanochemical interaction between solid and liquid metals. Phys Metals Metallogr 107(5):457–465. https://doi.org/10.1134/S0031918X09050068 CrossRefGoogle Scholar
- 29.Grigoreva TF, Ancharov AI, Pindyurin VF, Barinova AP, Boldyrev VV (2008) Phase transformation sequence during interaction mechanochemically synthesized solid solution with liquid eutectics. Rev Adv Mater Sci 18(8):716–719Google Scholar
- 30.Glickman EE (2000) Mechanism of liquid metal embrittlement by simple experiments: from atomistics to life-time. In: Lépinoux J, Mazière D, Pontkis V, Saada G (eds) Multiscale phenomena in plasticity: from experiments to phenomenology, modelling and materials engineering, vol 367. Springer, Dordrecht, pp 383–402. https://doi.org/10.1007/978-94-011-4048-5_30 CrossRefGoogle Scholar
- 31.Rabkin E (2000) Grain boundary embrittlement by liquid metals. In: Lépinoux J, Mazière D, Pontkis V, Saada G (eds) Multiscale phenomena in plasticity: from experiments to phenomenology, modelling and materials engineering, vol 367. Springer, Dordrecht, pp 403–414. https://doi.org/10.1007/978-94-011-4048-5_31 CrossRefGoogle Scholar
- 32.Rusakov VS, Chistyakova NI (1992) Mossbauer program complex MSTools. In: Latin American conference on the application of the Mössbauer effect (LACAME’92), Argentina, 5–9, October, 1992, pp 7–3Google Scholar
- 33.Rusakov VS, Kadyrzhanov KK (2005) Mössbauer spectroscopy of locally inhomogeneous systems. Hyperfine Interact 164(1–4):87–97. https://doi.org/10.1007/s10751-006-9236-2 Google Scholar
- 34.Wertheim GK, Jaccarino V, Wernick JH, Buchanan DNE (1964) Range of the exchange interaction in iron alloys. Phys Rev Lett 12(1):24–27. https://doi.org/10.1103/PhysRevLett.12.24 CrossRefGoogle Scholar
- 35.ICDD PDF-2 (2017) http://www.icdd.com/products/pdf2.htm. Accessed November 2017
- 36.Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2(2):65–71. https://doi.org/10.1107/S0021889869006558 CrossRefGoogle Scholar
- 37.Solovyov L (2004) Full-profile refinement by derivative difference minimization. J Appl Cryst 37(5):743–749. https://doi.org/10.1107/S0021889804015638 CrossRefGoogle Scholar
- 38.Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089 CrossRefGoogle Scholar
- 39.Okamoto H (2004) Fe–Ga (iron-gallium). J Phase Equilib Diffus 25(1):100. https://doi.org/10.1007/s11669-004-0187-5 CrossRefGoogle Scholar
- 40.Okamoto H (1990) The Fe–In (iron–indium) system. Bull Alloy Phase Diagrams 11(2):143–146. https://doi.org/10.1007/BF02841698 CrossRefGoogle Scholar
- 41.Anderson TJ, Ansara I (1991) The Ga–In (gallium–indium) system. J Phase Equilib 12(1):64–72. https://doi.org/10.1007/BF02663677 CrossRefGoogle Scholar
- 42.Lima-de-Faria J (2002) Structural classification and notation. In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds—principle and practice, vol 3: Progress. Wiley, Chichester, pp 3–20. https://doi.org/10.1002/0470845856.ch1 CrossRefGoogle Scholar
- 43.Khmelevska T, Khmelevskyi S, Mohn P (2008) Magnetism and structural ordering on a bcc lattice for highly magnetostrictive Fe–Ga alloys: a coherent potential approximation study. J Appl Phys 103(7):073911. https://doi.org/10.1063/1.2903071 CrossRefGoogle Scholar
- 44.Miedema AR, de Boer FR, Boom R (1977) Model predictions for the enthalpy of formation of transition metal alloys. Calphad 1(4):341–359. https://doi.org/10.1016/0364-5916(77)90011-6 CrossRefGoogle Scholar
- 45.Egerton RF (2016) Physical principles of electron microscopy, 2nd edn. Springer, Cham. https://doi.org/10.1007/978-3-319-39877-8 CrossRefGoogle Scholar
- 46.König R, Müller S, Dinnebier RE, Müller P, Ribbens A, Hwang J, Liebscher R, Etter M, Pistidda C (2017) The crystal structures of carbonyl iron powder—revised using in situ synchrotron XRPD. Z Kristallogr 232(12):835–842. https://doi.org/10.1515/zkri-2017-2067 Google Scholar
- 47.Mathalone Z, Ron M, Pipman J, Niedzwiedz S (1971) Mössbauer characteristics of ε, χ, and θ iron carbides. J Appl Phys 42(2):687–695. https://doi.org/10.1063/1.1660082 CrossRefGoogle Scholar
- 48.O’Donnell K, Rao X-L, Laird G, Coey JMD (1996) Metastable iron nitrides by mechanical alloying. Phys Status Solidi A 153(1):223–231. https://doi.org/10.1002/pssa.2211530122 CrossRefGoogle Scholar
- 49.Palacheva VV, Emdadi A, Emeis F, Bobrikov IA, Balagurov AM, Divinski SV, Wilde G, Golovin IS (2017) Phase transitions as a tool for tailoring magnetostriction in intrinsic Fe–Ga composites. Acta Mater 130:229–239. https://doi.org/10.1016/j.actamat.2017.03.049 CrossRefGoogle Scholar
- 50.Swanson HE, Fuyat RK, Ugrinic GM (1956) Standard X-Ray diffraction powder patterns, vol IV. National Bureau of Standards Circular 539. U. S. Dept. of Commerce, National Bureau of Standards, WashingtonGoogle Scholar
- 51.Nishino Y, Matsuo M, Asano S, Kawamiya N (1991) Stability of the DO3 phase in (Fe1−xMx)3Ga (M; 3d transition metals). Scr Metall Mater 25(10):2291–2296. https://doi.org/10.1016/0956-716X(91)90017-U CrossRefGoogle Scholar
- 52.Gleiter H (1992) Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct Mater 1:1–19. https://doi.org/10.1016/0965-9773(92)90045-Y CrossRefGoogle Scholar
- 53.Kim HS, Estrin Y, Bush MB (2000) Plastic deformation behaviour of fine-grained materials. Acta Mater 48(2):493–504. https://doi.org/10.1016/S1359-6454(99)00353-5 CrossRefGoogle Scholar
- 54.McCormick PG, Froes FH (1998) The fundamentals of mechanochemical processing. JOM 50(11):61–65. https://doi.org/10.1007/s11837-998-0290-x CrossRefGoogle Scholar
- 55.Dunlap RA, McGraw JD, Farrell SP (2006) A Mössbauer effect study of structural ordering in rapidly quenched Fe–Ga alloys. J Magn Magn Mater 305(2):315–320. https://doi.org/10.1016/j.jmmm.2006.01.020 CrossRefGoogle Scholar
- 56.Dunlap RA, Deschamps NC, Mar RE, Farrell SP (2006) Mössbauer effect studies of Fe100−xGax films prepared by combinatorial methods. J Phys Condens Matter 18(20):4907–4920. https://doi.org/10.1088/0953-8984/18/20/015 CrossRefGoogle Scholar
- 57.Kawamiya N, Adachi K, Nakamura Y (1972) Magnetic properties and Mössabauer investigations of Fe–Ga Alloys. J Phys Soc Jpn 33(5):1318–1327. https://doi.org/10.1143/JPSJ.33.1318 CrossRefGoogle Scholar
- 58.Newkirk LR, Tsuei CC (1971) Mössbauer study of hyperfine magnetic interactions in Fe–Ga solid solutions. Phys Rev B 4(11):4046. https://doi.org/10.1103/PhysRevB.4.4046 CrossRefGoogle Scholar
- 59.Kawamiya N, Adachi K (1982) Magnetic structure of Fe3Ga studied by neutron diffraction. Trans Jpn Inst Met 23(6):296–302. https://doi.org/10.2320/matertrans1960.23.296 CrossRefGoogle Scholar
- 60.Preston RS, Hanna SS, Heberle J (1962) Mössbauer effect in metallic iron. Phys Rev 128(5):2207. https://doi.org/10.1103/PhysRev.128.2207 CrossRefGoogle Scholar
- 61.Del Bianco L, Hernando A, Bonetti E, Navarro E (1997) Grain-boundary structure and magnetic behavior in nanocrystalline ball-milled iron. Phys Rev B 56(14):8894–8901. https://doi.org/10.1103/PhysRevB.56.8894 CrossRefGoogle Scholar
- 62.Vincze I, Campbell A (1973) Mössbauer measurements in iron based alloys with transition metals. J Phys F Metal Phys 3:647–663. https://doi.org/10.1088/0305-4608/3/3/023 CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2018