Journal of Materials Science

, Volume 53, Issue 12, pp 8951–8962 | Cite as

Urea-assisted synthesis of amorphous molybdenum sulfide on P-doped carbon nanotubes for enhanced hydrogen evolution

  • Hongzhi Wang
  • Haibin Zhou
  • Weiguo Zhang
  • Suwei Yao
Chemical routes to materials
  • 61 Downloads

Abstract

Amorphous molybdenum sulfide on P-doped carbon nanotubes (MoS x /P-CNTs) composite with an original leaves–branch architecture for hydrogen evolution reaction (HER) is successfully fabricated by urea-assisted synthesis via a facile hydrothermal process. It is found that urea used in the process of preparation played a crucial role in the establishment of this unique structure, where leaves-like MoS x nanosheets are uniformly anchored on P-CNTs substrate. Besides, the optimal amount of MoS x on P-CNTs bundles is investigated in this paper. Due to the synergistic coupling effects of MoS x nanosheets and P-CNTs bundles, as a result, the unique structure maintains abundant active sites, a high electrical conductivity as well as distinctive electrons transport mechanism, which gives the optimum MoS x /P-CNTs composite, a higher activity for HER with an overpotential of 151 mV (vs. RHE) to reach a current density of 10 mA cm−2 and a smaller Tafel slope of 49 mV dec−1. Stability tests indicate that the catalyst exhibits excellent electrochemical durability in 0.5 M H2SO4 solution. We envision that this work could provide new insights into the rational design of MoS x -based electrocatalysts for energy conversion and storage.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_2226_MOESM1_ESM.doc (8 mb)
Supplementary material 1 (DOC 8171 kb)

References

  1. 1.
    Turner JA (2004) Sustainable hydrogen production. Science 305:972–974CrossRefGoogle Scholar
  2. 2.
    Sun A, Shen Y, Wu Z, Wang D (2017) N-doped MoP nanoparticles for improved hydrogen evolution. Int J Hydrog Energy 42:14566–14571CrossRefGoogle Scholar
  3. 3.
    Han L, Xu M, Han Y, Yu Y, Dong S (2016) Core–shell-structured tungsten carbide encapsulated within nitrogen-doped carbon spheres for enhanced hydrogen evolution. Chemsuschem 9:2784–2787CrossRefGoogle Scholar
  4. 4.
    Wang T, Li X, Jiang Y, Zhou Y, Jia L, Wang C (2017) Reduced graphene oxide-polyimide/carbon nanotube film decorated with NiSe nanoparticles for electrocatalytic hydrogen evolution reactions. Electrochim Acta 243:291–298CrossRefGoogle Scholar
  5. 5.
    Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrog Energy 27:991–1022CrossRefGoogle Scholar
  6. 6.
    Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502CrossRefGoogle Scholar
  7. 7.
    Sivanantham A, Shanmugam S (2017) Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Appl Catal B Environ 203:485–493CrossRefGoogle Scholar
  8. 8.
    Sljukic B, Santos DM, Vujkovic M et al (2016) Molybdenum carbide nanoparticles on carbon nanotubes and carbon xerogel: low-cost cathodes for hydrogen production by alkaline water electrolysis. Chemsuschem 9:1200–1208CrossRefGoogle Scholar
  9. 9.
    Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10:2289–2295CrossRefGoogle Scholar
  10. 10.
    Laursen AB, Kegnæs S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591CrossRefGoogle Scholar
  11. 11.
    Voiry D, Salehi M, Silva R et al (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227CrossRefGoogle Scholar
  12. 12.
    Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102CrossRefGoogle Scholar
  13. 13.
    Hinnemann B, Moses PG, Bonde J et al (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309CrossRefGoogle Scholar
  14. 14.
    Kong D, Wang H, Lu Z, Cui Y (2014) CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J Am Chem Soc 136:4897–4900CrossRefGoogle Scholar
  15. 15.
    Yang H, Zhang T, Zhu H, Zhang M, Wu W, Du M (2017) Synthesis of a MoS2(1−x)Se2x ternary alloy on carbon nanofibers as the high efficient water splitting electrocatalyst. Int J Hydrog Energy 42:1912–1918CrossRefGoogle Scholar
  16. 16.
    Li T, Tang D, Li C (2017) A high active hydrogen evolution reaction electrocatalyst from ionic liquids-originated cobalt phosphide/carbon nanotubes. Int J Hydrog Energy 42:21786–21792CrossRefGoogle Scholar
  17. 17.
    Liu Y-R, Hu W-H, Li X et al (2016) Facile one-pot synthesis of CoS2–MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction. Appl Surf Sci 384:51–57CrossRefGoogle Scholar
  18. 18.
    Wang X, Chen Y, Qi F et al (2016) Interwoven WSe2/CNTs hybrid network: a highly efficient and stable electrocatalyst for hydrogen evolution. Electrochem Commun 72:74–78CrossRefGoogle Scholar
  19. 19.
    Zhang X, Zhang X, Xu H, Wu Z, Wang H, Liang Y (2017) Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv Funct Mater 27:1606635–1606646CrossRefGoogle Scholar
  20. 20.
    Chang YH, Lin CT, Chen TY et al (2013) Highly efficient electrocatalytic hydrogen production by MoS(x) grown on graphene-protected 3D Ni foams. Adv Mater 25:756–760CrossRefGoogle Scholar
  21. 21.
    Imran M, Yousaf AB, Zaidi SJ, Fernandez C (2017) Tungsten-molybdenum oxide nanowires/reduced graphene oxide nanocomposite with enhanced and durable performance for electrocatalytic hydrogen evolution reaction. Int J Hydrog Energy 42:8130–8138CrossRefGoogle Scholar
  22. 22.
    Ye Z, Yang J, Li B, et al (2017) Amorphous molybdenum sulfide/carbon nanotubes hybrid nanospheres prepared by ultrasonic spray pyrolysis for electrocatalytic hydrogen evolution. Small 13:1700111–1700119CrossRefGoogle Scholar
  23. 23.
    Wu C, Yang Y, Dong D, Zhang Y, Li J (2017) In situ coupling of CoP polyhedrons and carbon nanotubes as highly efficient hydrogen evolution reaction electrocatalyst. Small 13:1602873–1602881CrossRefGoogle Scholar
  24. 24.
    Li DJ, Maiti UN, Lim J et al (2014) Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett 14:1228–1233CrossRefGoogle Scholar
  25. 25.
    Wang X, Zheng Y, Yuan J, Shen J, Niu L, A-j Wang (2017) Controllable synthesis of caterpilliar-like molybdenum sulfide @ carbon nanotube hybrids with core shell structure for hydrogen evolution. Electrochim Acta 235:422–428CrossRefGoogle Scholar
  26. 26.
    Guo B, Yu K, Li H et al (2016) Hollow structured micro/nano MoS(2) spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl Mater Interfaces 8:5517–5525CrossRefGoogle Scholar
  27. 27.
    Reddy S, Du R, Kang L, Mao N, Zhang J (2016) Three dimensional CNTs aerogel/MoSx as an electrocatalyst for hydrogen evolution reaction. Appl Catal B Environ 194:16–21CrossRefGoogle Scholar
  28. 28.
    Khan M, Yousaf AB, Chen M et al (2016) Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res 9:837–848CrossRefGoogle Scholar
  29. 29.
    Li X, Fang Y, Zhao S et al (2016) Nitrogen-doped mesoporous carbon nanosheet/carbon nanotube hybrids as metal-free bi-functional electrocatalysts for water oxidation and oxygen reduction. J Mater Chem A 4:13133–13141CrossRefGoogle Scholar
  30. 30.
    Li X, Fang Y, Lin X et al (2015) MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR. J Mater Chem A 3:17392–17402CrossRefGoogle Scholar
  31. 31.
    Zou X, Huang X, Goswami A et al (2014) Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew Chem Int Ed 53:4372–4376CrossRefGoogle Scholar
  32. 32.
    Li P, Yang Z, Shen J et al (2016) Subnanometer molybdenum sulfide on carbon nanotubes as a highly active and stable electrocatalyst for hydrogen evolution reaction. ACS Appl Mater Interfaces 8:3543–3550CrossRefGoogle Scholar
  33. 33.
    Xie J, Zhang H, Li S et al (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25:5807–5813CrossRefGoogle Scholar
  34. 34.
    Ekspong J, Sharifi T, Shchukarev A, Klechikov A, Wågberg T, Gracia-Espino E (2016) Stabilizing active edge sites in semicrystalline molybdenum sulfide by anchorage on nitrogen-doped carbon nanotubes for hydrogen evolution reaction. Adv Funct Mater 26:6766–6776CrossRefGoogle Scholar
  35. 35.
    Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF (2012) Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal 2:1916–1923CrossRefGoogle Scholar
  36. 36.
    Li Z, Dai X, Du K et al (2016) Reduced graphene oxide/O-MWCNT hybrids functionalized with p-phenylenediamine as high-performance MoS2 electrocatalyst support for hydrogen evolution reaction. J Phys Chem C 120:1478–1487CrossRefGoogle Scholar
  37. 37.
    Yan Y, Xia B, Ge X, Liu Z, Wang J-Y, Wang X (2013) Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. ACS Appl Mater Interfaces 5:12794–12798CrossRefGoogle Scholar
  38. 38.
    Liu P, Zhu J, Zhang J et al (2017) P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Lett 2:745–752CrossRefGoogle Scholar
  39. 39.
    Li R, Wei Z, Gou X, Xu W (2013) Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts. RSC Adv 3:9978–9984CrossRefGoogle Scholar
  40. 40.
    Wang Y, Yin C, Qin H et al (2015) A urea-assisted template method to synthesize mesoporous N-doped CeO2 for CO2 capture. Dalton Trans 44:18718–18722CrossRefGoogle Scholar
  41. 41.
    Zheng J-Y, Pang J-B, Qiu K-Y, Wei Y (2001) Synthesis and characterization of mesoporous titania and silica-titania materials by urea templated sol–gel reactions. Micropor Mesopor Mater 49:189–195CrossRefGoogle Scholar
  42. 42.
    Zhang X, Li L, Guo Y, Liu D, You T (2016) Amorphous flower-like molybdenum-sulfide-@-nitrogen-doped-carbon-nanofiber film for use in the hydrogen-evolution reaction. J Colloid Interf Sci 472:69–75CrossRefGoogle Scholar
  43. 43.
    Zhu H, Du M, Zhang M et al (2014) S-rich single-layered MoS2 nanoplates embedded in N-doped carbon nanofibers: efficient co-electrocatalysts for the hydrogen evolution reaction. Chem Commun 50:15435–15438CrossRefGoogle Scholar
  44. 44.
    Cao P, Peng J, Li J, Zhai M (2017) Highly conductive carbon black supported amorphous molybdenum disulfide for efficient hydrogen evolution reaction. J Power Sources 347:210–219CrossRefGoogle Scholar
  45. 45.
    Hu W-H, Shang X, Han G-Q et al (2016) MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution. Carbon 100:236–242CrossRefGoogle Scholar
  46. 46.
    Cai Y, Yang X, Liang T et al (2014) Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS(2) for high-performance hydrogen evolution. Nanotechnology 25:465401–465406CrossRefGoogle Scholar
  47. 47.
    Li H, Yu K, Li C et al (2015) Charge-transfer induced high efficient hydrogen evolution of MoS2/graphene cocatalyst. Sci Rep 5:18730–18740CrossRefGoogle Scholar
  48. 48.
    Ye W, Ren C, Liu D et al (2016) Maneuvering charge polarization and transport in 2H-MoS2 for enhanced electrocatalytic hydrogen evolution reaction. Nano Res 9:2662–2671CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Chemistry, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations