Advertisement

Journal of Materials Science

, Volume 53, Issue 11, pp 8020–8029 | Cite as

Catalytic conversion of Kraft lignin to bio-multilayer graphene materials under different atmospheres

  • Qiangu Yan
  • Xuefeng Zhang
  • Jinghao Li
  • El Barbary Hassan
  • Chuji Wang
  • Jilei Zhang
  • Zhiyong Cai
Biomaterials

Abstract

Kraft lignin was catalytic graphitized by iron at 1000 °C in argon, hydrogen, CO2, methane, and natural gas atmospheres, respectively. The effect of atmospheric agent types on product distribution (gas, liquid, and solid carbon yields) was analyzed. The solid products were characterized by scanning electron microscopy, Raman, high-resolution transmission electron microscopy, and X-ray diffraction. Experimental results have shown that the degree of graphitization of Kraft lignin depends not only on the highest temperature, but also the type of ambient gas phase during heat treatment. Methane and natural gas in the ambient gas phase seem to accelerate the formation of multilayer graphene materials with a range of 2–30 layers, and hydrogen and carbon dioxide have an etching effect on solid carbon species during the catalytic graphitization process, while multilayer graphene-encapsulated iron nanoparticles were the main products in the case of argon.

Notes

Acknowledgements

This work was supported by the USDA Forest Service through Grant No. 16-JV-11111124-075. The authors would like to acknowledge Domtar Corp., North Carolina, for providing Kraft lignin for this study. The assistance of Ms. Amanda Lawrence of the Institute for Imaging and Analytical Technologies (I2AT) at Mississippi State University is gratefully acknowledged.

Supplementary material

10853_2018_2172_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 kb)

References

  1. 1.
    Ōya A, Marsh H (1982) Phenomena of catalytic graphitization. J Mater Sci 17(2):309–322.  https://doi.org/10.1007/BF00591464 CrossRefGoogle Scholar
  2. 2.
    Noda Tokiti, Inagaki Michio (1964) Effect of gas phase on graphitization of carbon. Carbon 2:127–130CrossRefGoogle Scholar
  3. 3.
    Noda T, Inagaki M, Sekiya T (1965) Kinetic studies of the graphitization process—I effect of ambient gas phase on the rate of graphitization. Carbon 3:175–180CrossRefGoogle Scholar
  4. 4.
    Yan Q, Toghiani H, Yu F, Cai Z, Zhang J (2011) Effects of pyrolysis conditions on yield of bio-chars from pine chips. For Prod J 61(5):367–371Google Scholar
  5. 5.
    Okazaki S, Yamaguchi K, Sakamoto A, Ogi T, Okuyama K (2014) Effect of gas atmosphere on graphitization of carbon powder. Kagaku Kogaku Ronbunshu 40(1):12–17CrossRefGoogle Scholar
  6. 6.
    Bachmatiuk A, Boeckl J, Smith H, Ibrahim I, Gemming T, Oswald S, Kazmierczak W, Makarov D, Schmidt OG, Eckert J, Fu LH, Rummeli MH (2015) Vertical graphene growth from amorphous carbon films using oxidizing gases. J Phys Chem C 119(31):17965–17970CrossRefGoogle Scholar
  7. 7.
    Son IH, Park JH, Kwon S, Choi JW, Rümmeli MH (2016) Graphene coating of silicon nanoparticles with CO2—enhanced chemical vapor deposition. Small 12:658–667.  https://doi.org/10.1002/smll.201502880 CrossRefGoogle Scholar
  8. 8.
    Hata Kenji, Futaba Don N, Mizuno Kohei, Namai Tatsunori, Yumura Motoo, Iijima Sumio (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700):1362–1364CrossRefGoogle Scholar
  9. 9.
    Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069–6076.  https://doi.org/10.1021/nn201978y CrossRefGoogle Scholar
  10. 10.
    Son IH, Song HJ, Kwon S, Bachmatiuk A, Lee SJ, Benayad A, Park JH, Choi J-Y, Chang H, Rümmeli MH (2014) CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8:9224–9232.  https://doi.org/10.1021/nn504342e CrossRefGoogle Scholar
  11. 11.
    Mitchel WC, Boeckl J, Tomlin D, Lu W, Rigueur J, Reynolds J (2005) Growth of carbon nanotubes by sublimation of silicon carbide substrates. In: Razeghi M, Brown GJ (eds) International Society for Optics and Photonics, p 77.  https://doi.org/10.1117/12.590456
  12. 12.
    Lu W, Boeckl JJ, Mitchel WC (2010) A critical review of growth of low-dimensional carbon nanostructures on SiC (0 0 0 1): impact of growth environment. J Phys D Appl Phys 43:374004.  https://doi.org/10.1088/0022-3727/43/37/374004 CrossRefGoogle Scholar
  13. 13.
    Lu WJ, Boeckl J, Mitchel WC, Rigueur J, Collins WE (2006) Role of oxygen in growth of carbon nanotubes on SiC. Mater Sci Forum 527–529:1575–1578.  https://doi.org/10.4028/www.scientific.net/MSF.527-529.1575 CrossRefGoogle Scholar
  14. 14.
    Bystrzejewski M, Schönfelder R, Cuniberti G, Lange H, Huczko A, Gemming T, Pichler T, Büchner B, Rümmeli M (2008) Exposing multiple roles of H2O in high-temperature enhanced carbon nanotube synthesis. Chem Mater 20:6586–6588.  https://doi.org/10.1021/cm8020676 CrossRefGoogle Scholar
  15. 15.
    Nomura T, Katsura M, Sano T (1973) Graphitization of free carbon precipitating due to the reaction of UC with N2. J Nucl Mater 47:58–64.  https://doi.org/10.1016/0022-3115(73)90186-4 CrossRefGoogle Scholar
  16. 16.
    Gao L, Ren W, Zhao J, Ma L-P, Chen Z, Cheng H-M (2010) Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Appl Phys Lett 97(18):183109CrossRefGoogle Scholar
  17. 17.
    Losurdo M, Giangregorio MM, Capezzuto P, Bruno G (2011) Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys 13(46):20836–20843CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Li Z, Kim P, Zhang L, Zhou C (2012) Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 6(1):126–132CrossRefGoogle Scholar
  19. 19.
    Kong J, Cassell AM, Dai H (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 292(4–6):567–574CrossRefGoogle Scholar
  20. 20.
    Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313(1–2):91–97CrossRefGoogle Scholar
  21. 21.
    Xu F, Liu X, Stephen DT (2006) Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames. Carbon 44(3):570–577CrossRefGoogle Scholar
  22. 22.
    Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nature 468:549–552.  https://doi.org/10.1038/nature09579 CrossRefGoogle Scholar
  23. 23.
    Liu X, Fu L, Liu N, Gao T, Zhang Y, Liao L, Liu Z (2011) Segregation growth of graphene on Cu–Ni alloy for precise layer control. J Phys Chem C 115:11976–11982.  https://doi.org/10.1021/jp202933u CrossRefGoogle Scholar
  24. 24.
    Zheng M, Takei K, Hsia B, Fang H, Zhang X, Ferralis N, Ko H, Chueh Y-L, Zhang Y, Maboudian R, Javey A (2010) Metal-catalyzed crystallization of amorphous carbon to graphene. Appl Phys Lett 96:63110.  https://doi.org/10.1063/1.3318263 CrossRefGoogle Scholar
  25. 25.
    Kwak J, Chu JH, Choi J-K, Park S-D, Go H, Kim SY, Park K, Kim S-D, Kim Y-W, Yoon E, Kodambaka S, Kwon S-Y (2012) Near room-temperature synthesis of transfer-free graphene films. Nat. Commun 3:645.  https://doi.org/10.1038/ncomms1650 CrossRefGoogle Scholar
  26. 26.
    Xie WG, Chen J, Chen J, Ming WW, Deng SZ, Xu NS (2009) Study on effect of hydrogen treatment on amorphous carbon film using scanning probe microscopy. Ultramicroscopy 109(5):451–456CrossRefGoogle Scholar
  27. 27.
    Nasibulin AG, Brown DP, Queipo P, Gonzalez D, Jiang H, Kauppinen EI (2006) An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide. Chem Phys Lett 417:179–184CrossRefGoogle Scholar
  28. 28.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1290CrossRefGoogle Scholar
  29. 29.
    Abdelaziz Omar Y, Brink Daniel P, Prothmann Jens, Ravi Krithika, Sun Mingzhe, García-Hidalgo Javier, Sandahl Margareta, Hulteberg Christian P, Turner Charlotta, Lidén Gunnar, Gorwa-Grauslun Marie F (2016) Biological valorization of low molecular weight lignin. Biotechnol Adv 34(8):1318–1346CrossRefGoogle Scholar
  30. 30.
    Fengel D, Wegener G (1984) Wood (Chemistry, Ultrastructure, Reactions). Walter de Gruyter, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature (outside the USA) 2018

Authors and Affiliations

  1. 1.Department of Sustainable BioproductsMississippi State UniversityMississippi StateUSA
  2. 2.Department of BiomaterialsInternational Center for Bamboo and RattanBeijingChina
  3. 3.Forest Products Lab, USDA Forest ServiceMadisonUSA
  4. 4.Department of Physics and AstronomyMississippi State UniversityMississippi StateUSA

Personalised recommendations