Journal of Materials Science

, Volume 53, Issue 12, pp 8817–8825 | Cite as

Synthesis and characterization of Ti-doped ZrSiO4 at ambient and high-pressure conditions

  • S. Ferrari
  • F. Grinblat
  • V. Bilovol
  • L. G. Pampillo
  • F. D. Saccone
  • D. Errandonea
  • C. M. Chanquía
Ceramics
  • 47 Downloads

Abstract

We have successfully synthesized for the first time a Ti-doped ZrSiO4 powder (stoichiometry Zr0.95Ti0.05SiO4) via a sol–gel route. The structural and vibrational properties have been characterized by X-ray diffraction, electron microscopy and Raman spectroscopy. Zr0.95Ti0.05SiO4 has a tetragonal zircon-type structure with a = 6.5981(2) Å and c = 5.9810(2) Å. Eight of its Raman-active modes have been measured and assigned. We also performed high-pressure synchrotron X-ray diffraction experiments. The structural behavior was studied up to 31 GPa. At this pressure, we found evidence of the onset of a phase transition, coexisting the low-pressure polymorphs (zircon) with the typical high-pressure polymorph of ZrSiO4 (reidite-type). From the analysis of unit-cell volume versus pressure using a Birch–Murnaghan equation of state, in the quasi-hydrostatic pressure regime (P < 10.5 GPa), we have determined a bulk modulus of 297 GPa. This magnitude represents an enhancement of a 30% in the value of this parameter if compared with un-doped zircon-type ZrSiO4 (bulk modulus < 227 GPa). The low compressibility of Zr0.95Ti0.05SiO4 converts this compound in a very good candidate for many technological applications. The effect of pressure on the linear compressibility of the lattice parameters is also analyzed.

Notes

Acknowledgements

SEM and Raman measurements were performed at Y-TEC S. A. S. Ferrari, F. Grinblat and L. G. Pampillo thank the financial support provided by the Agencia Nacional de PromociónCientífica y Tecnológica (ANPCyT) under Grant PICT-2012- 1730. D. E. thanks the support of Spanish MINECO and European FEDER under Grant No. MAT2016-75586-C4-1-P. The authors thank the partial support from LNLS with Project XDS-18856.

References

  1. 1.
    Grinblat F, Ferrari S, Pampillo LG, Saccone FD, Errandonea D, Santamaria-Perez D, Segura A, Vilaplana R, Popescu C (2017) Compressibility and structural behavior of pure and Fe-doped SnO2 nanocrystals. Solid State Sci 64:91–98CrossRefGoogle Scholar
  2. 2.
    Errandonea D, Ferrer-Roca C, Martinez-Garcia D et al (2010) High-pressure x-ray diffraction and ab initio study of Ni2Mo3N, Pd2Mo3N, Pt2Mo3N, Co3Mo3N, and Fe3Mo3N: two families of ultra-incompressible bimetallic interstitial nitrides. Phys Rev B 82:1–8CrossRefGoogle Scholar
  3. 3.
    Rignanese GM, Rocquefelte X, Gonze X, Pasquarello A (2005) Titanium oxides and silicates as high-κ dielectrics: a first-principles investigation. Int J Quantum Chem 101:793–801CrossRefGoogle Scholar
  4. 4.
    Liu H, Liu ZT, Ren J et al (2017) Structural, electronic, mechanical, dielectric and optical properties of TiSiO4: first-principles study. Solid State Commun 251:43–49CrossRefGoogle Scholar
  5. 5.
    Gracia L, Beltran A, Errandonea D (2009) Characterization of the TiSiO4 structure and its pressure-induced phase transformations: density functional theory study. Phys Rev B 80:1–10CrossRefGoogle Scholar
  6. 6.
    Seriani N, Pinilla C, Scandolo S (2017) Titania–silica mixed oxides investigated with density functional theory and molecular dynamics simulations. Phys Status Solidi B 254:11062–11067CrossRefGoogle Scholar
  7. 7.
    Shwetha G, Kanchana V, Ramesh Babu K, Vaitheeswaran G, Valsakumar MC (2014) High-pressure structural stability and optical properties of scheelite-type ZrGeO4 and HfGeO4 X-ray phosphor hosts. J Phys Chem C 118:4325–4333CrossRefGoogle Scholar
  8. 8.
    Page FZ, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen F, Basei MAS, Valley JW (2007) Zircons from kimberlite: new insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71:3887–3903CrossRefGoogle Scholar
  9. 9.
    Marqués M, Flórez M, Recio JM, Gerward L, Olsen JS (2006) Structure and stability of ZrSiO4 under hydrostatic pressure. Phys Rev B 74:1–9Google Scholar
  10. 10.
    Tange Y, Takahashi E (2004) Stability of the high-pressure polymorph of zircon (ZrSiO4) in the deep mantle. Phys Earth Planet Inter 143–144:223–229CrossRefGoogle Scholar
  11. 11.
    Scott HP, Williams Q, Knittle E (2002) Ultralow compressibility silicate without highly coordinated silicon. Phys Rev Lett 88:015506CrossRefGoogle Scholar
  12. 12.
    Hazen RM, Finger LW (1979) Crystal structure and compressibility of zircon at high pressure. Am Mineral 64:196–201Google Scholar
  13. 13.
    Flórez M, Contreras-García J, Recio JM (2009) Quantum-mechanical calculations of zircon to scheelite transition pathways in ZrSiO4. Phys Rev B 79:1–11Google Scholar
  14. 14.
    van Westrenen W, Frank MR, Hanchar JM, Fei Y, Finch RJ, Zha C-S (2004) In situ determination of the compressibility of synthetic pure zircon (ZrSiO4) and the onset of the zircon-reidite phase transition. Am Mineral 89:197–203CrossRefGoogle Scholar
  15. 15.
    Errandonea D, Kumar RS, Gracia L, Beltrán A, Achary SN, Tyagi AK (2009) Experimental and theoretical investigation of ThGeO4 at high pressure. Phys Rev 80:1–7CrossRefGoogle Scholar
  16. 16.
    Manoun B, Downs RT, Saxena SK (2006) A high-pressure Raman spectroscopic study of hafnon, HfSiO4. Am Mineral 91:1888–1892CrossRefGoogle Scholar
  17. 17.
    Veytizou C, Quinson JF, Douy A (2000) Sol–gel synthesis via an aqueous semi-alkoxide route and characterization of zircon powders. J Mater Chem 10:365–370CrossRefGoogle Scholar
  18. 18.
    Veytizou C, Quinson JF, Jorand Y (2002) Preparation of zircon bodies from amorphous precursor powder synthesized by sol–gel processing. J Eur Ceram Soc 22:2901–2909CrossRefGoogle Scholar
  19. 19.
    Mao HK, Xu J, Bell PM (1986) Calibration of the Rubi Pressure Gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676CrossRefGoogle Scholar
  20. 20.
    Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D 4:1–8Google Scholar
  21. 21.
    Errandonea D, Muñoz A, Gonzalez-Platas J (2014) Comment on high-pressure x-ray diffraction study of YBO3/Eu 3+, GdBO3, and EuBO3: pressure-induced amorphization in GdBO3. J Appl Phys 115:1–3CrossRefGoogle Scholar
  22. 22.
    Errandonea D (2015) Exploring the properties of MTO4 compounds using high-pressure powder x-ray diffraction. Cryst Res Technol 50:729–736CrossRefGoogle Scholar
  23. 23.
    Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk H-R (2007) Rietveld texture analysis from diffraction images. Z Kristallogr 26:125–130CrossRefGoogle Scholar
  24. 24.
    Errandonea D, Kumar RS, Gomis O, Manjon FJ, Ursaki VV, Tiginyanu IM (2013) X-ray diffraction study on pressure-induced phase transformations and the equation of state of ZnGa2Te4. J Appl Phys 114:1–7CrossRefGoogle Scholar
  25. 25.
    Tailby ND, Walker AM, Berry AJ et al (2011) Ti site occupancy in zircon. Geochim Cosmochim Acta 75(3):905–921CrossRefGoogle Scholar
  26. 26.
    Popescu C, Sans JA, Errandonea D, Segura A, Villanueva R, Sapiña F (2014) Compressibility and structural stability of nanocrystalline TiO2 anatase synthesized from freeze-dried precursors. Inorg Chem 53:11598–11603CrossRefGoogle Scholar
  27. 27.
    Heany PJ, Prewitt CT, Gibbs GV (1994) Silica: physical behaviour, geochemistry, and materials applications. Mineralogical Society of America, Washington, DCGoogle Scholar
  28. 28.
    Valigi M, Gazzoli D, Incocciati E, Dragone R (1997) Metastable phase formation in the TiO2–ZrO2 and CdO–ZrO2 systems. Solid State Ion 101:597–603Google Scholar
  29. 29.
    Cappelletti G, Ardizzone S, Fermo P, Gilardoni S (2005) The influence of iron content on the promotion of the zircon structure and the optical properties of pink coral pigments. J Eur Ceram Soc 25:911–917CrossRefGoogle Scholar
  30. 30.
    Ardizzone S, Binaghi L, Cappelletti G, Fermo P, Gilardoni S (2002) Iron doped zirconium silicate prepared by a sol-gel procedure. The effect of the reaction conditions on the structure, morphology and optical properties of the powders. Phys Chem Chem Phys 4:5683–5689CrossRefGoogle Scholar
  31. 31.
    Syme RWG, Lockwood DJ, Kerr HJ (1977) Raman spectrum of synthetic zircon (ZrSiO4) and thorite (ThSiO4). J Phys C 10(8):1335–1348CrossRefGoogle Scholar
  32. 32.
    Guedes I, Hirano Y, Grimsditch M, Wakabayashi N, Loong CK, Boatner LA (2001) Raman study of phonon modes in ErVO4 single crystals. J Appl Phys 90:1843–1846CrossRefGoogle Scholar
  33. 33.
    Panchal V, Manjon FJ, Errandonea D, Rodriguez-Hernandez P, Lopez-Solano J, Muñoz A, Achary SN, Tyagi AK (2011) High-pressure study of ScVO4 by Raman scattering and ab initio calculations. Phys Rev B 83:1–10CrossRefGoogle Scholar
  34. 34.
    Mohaček-Grošev V, Vrankić M, Maksimović A, Mandić V (2017) Influence of titanium doping on the Raman spectra of nanocrystalline ZnAl2O4. J Alloys Compd 697:90–95CrossRefGoogle Scholar
  35. 35.
    Panchal V, Errandonea D, Manjón FJ, Muñoz A, Rodríguez-Hernández P, Achary SN, Tyagi AK (2017) High-pressure lattice-dynamics of NdVO4. J Phys Chem Solids 100:126–133CrossRefGoogle Scholar
  36. 36.
    Garg AB, Errandonea D, Rodríguez-Hernández P, López-Moreno S, Muñoz A, Popescu C (2014) High-pressure structural behaviour of HoVO4: combined XRD experiments and ab initio calculations. J Phys: Condens Matter 26:265402Google Scholar
  37. 37.
    Errandonea D et al (2010) New high-pressure phase of HfTiO4 and ZrTiO4 ceramics. Mater Res Bull 45:1732–1735CrossRefGoogle Scholar
  38. 38.
    Lacomba-Perales R, Errandonea D, Meng Y, Bettinelli M (2010) High-pressure stability and compressibility of APO4 (A = La, Nd, Eu, Gd, Er, and Y) orthophosphates: an x-ray diffraction study using synchrotron radiation. Phys Rev 81:1–9Google Scholar
  39. 39.
    Birch F (1952) Elasticity and constitution of the earth’s interior. J Geophys Res 57:227–286CrossRefGoogle Scholar
  40. 40.
    Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Tecnología y Ciencias de la Ingeniería “Ing. Hilario Fernández Long” (INTECIN)Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Física, Facultad de IngenieríaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Departamento de Física Aplicada, Institut Universitari de Ciència dels MaterialsUniversitat de ValenciaValenciaSpain
  4. 4.Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CAB-CNEA)BarilocheArgentina

Personalised recommendations