Journal of Materials Science

, Volume 53, Issue 12, pp 8866–8877 | Cite as

Anionic NbO-type copper organic framework decorated with carboxylate groups for light hydrocarbons separation under ambient conditions

Chemical routes to materials
  • 73 Downloads

Abstract

Light hydrocarbons are important raw materials for industrial products and fine chemicals. The storage and separation of C1–C3 hydrocarbons are vital to their practical use. Here, we report efficient C1–C3 hydrocarbon adsorption and separation with a NbO-type anionic copper metal–organic framework with uncoordinated –COO groups ([Cu2(L)·(H2O)2]·2H2O·3DMA·(CH3)2NH2) (1). Complex 1 exhibited large C2H2 (190 cm3 g−1), C2H4 (147 cm3 g−1), C2H6 (156 cm3 g−1), C3H6 (170 cm3 g−1), and C3H8 (173 cm3 g−1) uptakes and high selectivities for C2H2/CH4 (32.3), C3H6/CH4 (152), and C3H8/CH4 (127) under ambient conditions. The excellent cycling performance of the material was reflected by only 9.2 and 10.9% losses of the C2H2 and C3H6 storage capacities even after ten cycles of adsorption–desorption tests. First-principles calculations and Grand canonical Monte Carlo simulations further revealed that not only the open metal sites but also the –COO groups played a key role in the high C2–C3 hydrocarbon uptakes. The results obtained in this study suggest that anionic 1 is a promising candidate for light hydrocarbon adsorption and natural gas purification at room temperature.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (21776315), the Program for Natural Science Foundation of Shandong Province (ZR2017MB053, ZR2016BL12), the Fundamental Research Funds for the Central Universities (17CX02031A, 15CX05068A and 15CX08010A) and Qingdao independent innovation program (16-5-1-88-jch).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_2155_MOESM1_ESM.docx (256 kb)
Supplementary material 1 (DOCX 255 kb)

References

  1. 1.
    Chen CX, Wei Z, Jiang JJ, Fan YZ, Zheng SP, Cao CC, Li YH, Fenske D, Su CY (2016) Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties. Angew Chem Int Ed 55:9932–9936CrossRefGoogle Scholar
  2. 2.
    He Y, Krishna R, Chen B (2012) Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ Sci 5:9107–9120CrossRefGoogle Scholar
  3. 3.
    Assen AH, Belmabkhout Y, Adil K, Bhatt PM, Xue DX, Jiang H, Eddaoudi M (2015) Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins. Angew Chem Int Ed 54:14353–14358CrossRefGoogle Scholar
  4. 4.
    Zhao Y, Wang J, Bao Z, Xing H, Zhang Z, Su B, Yang Q, Yang Y, Ren Q (2018) Adsorption separation of acetylene and ethylene in a highly thermostable microporous metal–organic framework. Sep Purif Technol 195:238–243CrossRefGoogle Scholar
  5. 5.
    Li B, Cui X, O’Nolan D, Wen HM, Jiang M, Krishna R, Wu H, Lin RB, Chen YS, Yuan D, Xing H, Zhou W, Ren Q, Qian G, Zaworotko MJ, Chen BL (2017) An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv Mater 29:1704210–1704216CrossRefGoogle Scholar
  6. 6.
    Magnowski NBK, Avila AM, Lin CCH, Shi M, Kuznicki SM (2011) Extraction of ethane from natural gas by adsorption on modified ETS-10. Chem Eng Sci 66:1697–1701CrossRefGoogle Scholar
  7. 7.
    Pang J, Jiang F, Wu M, Liu C, Su K, Lu W, Yuan D, Hong M (2015) A porous metal–organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nat Commun 6:7575–7582CrossRefGoogle Scholar
  8. 8.
    Zhang Z, Yang Q, Cui X, Yang L, Bao Z, Ren Q, Xing H (2017) Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew Chem Int Ed 56:16282–16287CrossRefGoogle Scholar
  9. 9.
    Tang FS, Lin RB, Lin RG, Zhao JCG, Chen B (2018) Separation of C2 hydrocarbons from methane in a microporous metal–organic framework. J Solid State Chem 258:346–350CrossRefGoogle Scholar
  10. 10.
    Cadiau A, Adil K, Bhatt PM, Belmabkhout Y, Eddaoudi MA (2016) Metal–organic framework-based splitter for separating propylene from propane. Science 353:137–140CrossRefGoogle Scholar
  11. 11.
    Yang L, Cui X, Yang Q, Qian S, Wu H, Bao Z, Zhang Z, Ren Q, Zhou W, Chen B, Xing H (2018) A single-molecule propyne trap: highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials. Adv Mater 30:1705374–1705382CrossRefGoogle Scholar
  12. 12.
    Zhao M, Yuan K, Wang Y, Li G, Guo J, Gu L, Hu W, Zhao H, Tang Z (2016) Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539:76–80CrossRefGoogle Scholar
  13. 13.
    He Y, Li B, O’Keeffe M, Chen B (2014) Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem Soc Rev 43:5618–5656CrossRefGoogle Scholar
  14. 14.
    Lin X, Jia J, Zhao X, Thomas KM, Blake AJ, Walker GS, Champness NR, Hubberstey P, Schroder M (2006) High H2 adsorption by coordination-framework materials. Angew Chem Int Ed 45:7358–7364CrossRefGoogle Scholar
  15. 15.
    Rao X, Cai J, Yu J, He Y, Wu C, Zhou W, Yildirim T, Chen B, Qian GD (2013) A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature. Chem Commun 49:6719–6721CrossRefGoogle Scholar
  16. 16.
    Li B, Wen HM, Wang H, Wu H, Tyagi M, Yildirim T, Zhou W, Chen B (2014) A porous metal–organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. J Am Chem Soc 136:6207–6210CrossRefGoogle Scholar
  17. 17.
    Yang S, Ramirez-Cuesta AJ, Newby R, Garcia-Sakai V, Manuel P, Callear SK, Campbell SI, Tang CC, Schroder M (2014) Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nat Commun 7:121–129Google Scholar
  18. 18.
    He Y, Xiang S, Zhang Z, Xiong S, Fronczek FR, Krishna R, O’Keeffe M, Chen B (2012) A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas. Chem Commun 48:10856–10858CrossRefGoogle Scholar
  19. 19.
    Ling Y, Jiao J, Zhang M, Liu H, Bai D, Feng Y, He Y (2016) A porous lanthanide metal–organic framework based on a flexible cyclotriphosphazene-functionalized hexacarboxylate exhibiting selective gas adsorption. CrystEngComm 18:6254–6261CrossRefGoogle Scholar
  20. 20.
    Liao PQ, Chen XW, Liu SY, Li XY, Xu YT, Tang M, Rui Z, Ji H, Zhang JP, Chen XM (2016) Putting an ultrahigh concentration of amine groups into a metal–organic framework for CO2 capture at low pressures. Chem Sci 7:6528–6533CrossRefGoogle Scholar
  21. 21.
    Luo F, Yan C, Dang L, Krishna R, Zhou W, Wu H, Dong X, Han Y, Hu TL, O’Keeffe M, Wang L, Luo M, Lin RB, Chen B (2016) UTSA-74: a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. J Am Chem Soc 138:5678–5684CrossRefGoogle Scholar
  22. 22.
    Bao SJ, Krishna R, He YB, Qin JS, Su ZM, Li SL, Xie W, Du DY, He WW, Zhang SR, Lan YQ (2015) A stable metal–organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO2 capture. J Mater Chem A 3:7361–7367CrossRefGoogle Scholar
  23. 23.
    Kim SY, Kim AR, Yoon JW, Kim HJ, Bae YS (2018) Creation of mesoporous defects in a microporous metal–organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake. Chem Eng J 335:94–100CrossRefGoogle Scholar
  24. 24.
    Bai J, Chen FL, Jiang DH, He YB (2017) A rare Pb9 cluster-organic framework constructed from a flexible cyclotriphosphazene-functionalized hexacarboxylate exhibiting selective gas separation. Inorg Chem Front 4:1501–1508CrossRefGoogle Scholar
  25. 25.
    Li L, Wang XS, Liang J, Huang YB, Li HF, Lin ZJ, Cao R (2016) Water-stable anionic metal–organic framework for highly selective separation of methane from natural gas and pyrolysis gas. ACS Appl Mater Interfaces 8:9777–9781CrossRefGoogle Scholar
  26. 26.
    Wen HM, Chang G, Li B, Lin RB, Hu TL, Zhou W, Chen B (2017) Highly enhanced gas uptake and selectivity via incorporating methoxy groups into a microporous metal–organic framework. Cryst Growth Des 17:2172–2177CrossRefGoogle Scholar
  27. 27.
    Zhang MX, Li B, Li YZ, Wang Q, Zhang W, Chen B, Li S, Pan Y, You X, Bai J (2016) Finely tuning MOFs towards high performance in C2H2 storage: synthesis and properties of a new MOF-505 analogue with an inserted amide functional group. Chem Commun 52:7241–7244CrossRefGoogle Scholar
  28. 28.
    Liu XP, Xiao ZY, Xu J, Xu WB, Sang PP, Zhao LM, Zhu HY, Sun DF, Guo WY (2016) A NbO-type copper metal–organic framework decorated with carboxylate groups exhibiting highly selective CO2 adsorption and separation of organic dyes. J Mater Chem A 4:13844–13851CrossRefGoogle Scholar
  29. 29.
    Gupta A, Chempath S, Sanborn MJ, Clark AL, Snurr QR (2003) Object-oriented programming paradigms for molecular modeling. Mol Simul 29:29–46CrossRefGoogle Scholar
  30. 30.
    Delley BJ (2000) From molecules to solids with the DMol3 approach. Chem Phys 113:7756–7764Google Scholar
  31. 31.
    Wen HM, Wang H, Li B, Cui Y, Wang H, Qian G, Chen B (2016) A microporous metal–organic framework with Lewis basic nitrogen sites for high C2H2 storage and significantly enhanced C2H2/CO2 separation at ambient conditions. Inorg Chem 55:7214–7218CrossRefGoogle Scholar
  32. 32.
    Duan X, Wang H, Ji Z, Cui Y, Yang Y, Qian G (2017) A novel NbO-type metal–organic framework for highly separation of methane from C2-hydrocarbon at room temperature. Mater Lett 196:112–114CrossRefGoogle Scholar
  33. 33.
    Liu K, Ma DX, Li B, Li Y, Yao KX, Zhang ZJ, Han Y, Shi Z (2014) High storage capacity and separation selectivity for C2 hydrocarbons over methane in the metal–organic framework Cu–TDPAT. J Mater Chem A 2:15823–15828CrossRefGoogle Scholar
  34. 34.
    Yang YY, Lin ZJ, Liu TT, Liang J, Cao R (2015) Synthesis, structures and physical properties of mixed-ligand coordination polymers based on a V-shaped dicarboxylic ligand. CrystEngComm 17:1381–1388CrossRefGoogle Scholar
  35. 35.
    Xiang S, Zhou W, Gallegos JM, Liu Y, Chen B (2009) Exceptionally high acetylene uptake in a microporous metal–organic framework with open metal sites. J Am Chem Soc 131:12415–12419CrossRefGoogle Scholar
  36. 36.
    Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38:1477–1504CrossRefGoogle Scholar
  37. 37.
    Nie Y, Li L, Wei ZD (2015) Recent advancements in Pt and Pt-Free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201CrossRefGoogle Scholar
  38. 38.
    He Y, Zhang Z, Xiang S, Fronczek FR, Krishna R, Chen B (2012) A robust doubly interpenetrated metal–organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem Commun 48:6493–6495CrossRefGoogle Scholar
  39. 39.
    Bloch ED, Queen WL, Krishna R, Zadrozny JM, Brown CM, Long JR (2012) Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335:1606–1610CrossRefGoogle Scholar
  40. 40.
    Gao S, Morris CG, Lu Z, Yan Y, Godfrey WHG, Murray C, Tang CC, Thomas KM, Yang S, Schröder M (2016) Selective hysteretic sorption of light hydrocarbons in a flexible metal–organic framework material. Chem Mater 28:2331–2340CrossRefGoogle Scholar
  41. 41.
    Zhang ZJ, Xiang SC, Rao XT, Zheng Q, Fronczek FR, Qian GD, Chen BL (2010) A rod packing microporous metal–organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. Chem Commun 46:7205–7207CrossRefGoogle Scholar
  42. 42.
    Das MC, Xu H, Xiang SC, Zhang ZJ, Arman HD, Qian GD, Chen BL (2017) A new approach to construct a doubly interpenetrated microporous metal–organic framework of primitive cubic net for highly selective sorption of small hydrocarbon molecules. Chem Eur J 17:7817–7822CrossRefGoogle Scholar
  43. 43.
    Guo HC, Shi F, Ma ZF, Liu XQ (2013) Simulation of separation of C2H6 from CH4 using zeolitic imidazolate frameworks. Mol Simul 40:349–360CrossRefGoogle Scholar
  44. 44.
    Fischer M, Hoffmann F, Froba M (2010) New microporous materials for acetylene storage and C2H2/CO2 separation: insights from molecular simulations. Chem Phys Chem 11:2220–2229CrossRefGoogle Scholar
  45. 45.
    Cui XL, Chen KJ, Xing HB, Yang QW, Krishna R, Bao ZB, Wu H, Zhou W, Dong XL, Han Y, Li B, Ren QL, Zaworotko MJ, Chen BL (2016) Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353:141–144CrossRefGoogle Scholar
  46. 46.
    Zheng B, Yang Z, Bai J, Li Y, Li S (2012) High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal–organic frameworks. Chem Commun 48:7025–7027CrossRefGoogle Scholar
  47. 47.
    Chen Z, Xiang S, Arman HD, Mondal JU, Li P, Zhao D, Chen B (2011) Three-dimensional pillar-layered copper(II) metal–organic framework with immobilized functional OH groups on pore surfaces for highly selective CO2/CH4 and C2H2/CH4 gas sorption at room temperature. Inorg Chem 50:3442–3446CrossRefGoogle Scholar
  48. 48.
    Bae YS, Lee CY, Kim KC, Farha OK, Nickias P, Hupp JT, Nguyen ST, Snurr RQ (2012) High propene/propane selectivity in isostructural metal–organic frameworks with high densities of open metal sites. Angew Chem Int Ed 51:1857–1860CrossRefGoogle Scholar
  49. 49.
    Lamia N, Jorge M, Granato MA, Almeida Paz FA, Chevreau H, Rodrigues AE (2009) Adsorption of propane, propylene and isobutane on a metal–organic framework: molecular simulation and experiment. Chem Eng Sci 64:3246–3259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceChina University of PetroleumQingdaoPeople’s Republic of China

Personalised recommendations