Advertisement

Journal of Materials Science

, Volume 53, Issue 10, pp 7571–7594 | Cite as

Selective synthesis of higher manganese silicides: a new Mn17Si30 phase, its electronic, transport, and optical properties in comparison with Mn4Si7

  • Ivan A. TarasovEmail author
  • Maxim A. Visotin
  • Tatiana V. Kuznetzova
  • Aleksandr S. Aleksandrovsky
  • Leonid A. Solovyov
  • Aleksandr A. Kuzubov
  • Kristina M. Nikolaeva
  • Aleksandr S. Fedorov
  • Anton S. Tarasov
  • Felix N. Tomilin
  • Michail N. Volochaev
  • Ivan A. Yakovlev
  • Tatiana E. Smolyarova
  • Aleksandr A. Ivanenko
  • Victoria I. Pryahina
  • Alexander A. Esin
  • Yuri M. Yarmoshenko
  • Vladimir Ya Shur
  • Sergey N. Varnakov
  • Sergey G. Ovchinnikov
Electronic materials

Abstract

The electronic structure, transport and optical properties of thin films of Mn4Si7 and Mn17Si30 higher manganese silicides (HMS) with the Nowotny “chimney-ladder” crystal structure are investigated using different experimental techniques and density functional theory calculations. Formation of new Mn17Si30 compound through selective solid-state reaction synthesis proposed and its crystal structure is reported for the first time, the latter belonging to I-42d. Absorption measurements show that both materials demonstrate direct interband transitions around 0.9 eV, while the lowest indirect transitions are observed close to 0.4 eV. According to ab initio calculations, ideally structured Mn17Si30 is a degenerate n-type semiconductor; however, the Hall measurements on the both investigated materials reveal their p-type conductivity and degenerate nature. Such a shift of the Fermi level is attributed to introduction of silicon vacancies in accordance with our DFT calculations and optical characteristics in low photon energy range (0.076–0.4 eV). The Hall mobility for Mn17Si30 thin film was found to be 25 cm2/V s at T = 77 K, being the highest among all HMS known before. X-ray photoelectron spectroscopy discloses a presence of plasmon satellites in the Mn4Si7 and Mn17Si30 valence band spectra. Experimental permittivity spectra for the Mn4Si7 and Mn17Si30 compounds in a wide range (0.076–6.54 eV) also indicate degenerate nature of both materials and put more emphasis upon the intrinsic relationship between lattice defects and optical properties.

Notes

Acknowledgements

This work was supported by the Russian Science Foundation, Project No. 16-13-00060. Aleksandr S. Aleksandrovsky thanks RFBR Grant No. 17-52-53031 for partial work related to the NIR measurements in section “Optical Properties”. The authors are grateful to Dr. A.V. Mudriy of Minsk State University for technical assistance. The equipment of the Center for Shared Use of Federal Research Center KSC SB RAS and the Ural Center “Modern Nanotechnology” of Ural Federal University was used.

Supplementary material

10853_2018_2105_MOESM1_ESM.docx (432 kb)
Supplementary material 1 (DOCX 425 kb)

References

  1. 1.
    Barczak SA, Downie RA, Popuri SR et al (2015) Thermoelectric properties of Fe and Al double substituted MnSiγ (γ ~ 1.73). J Solid State Chem 227:55–59.  https://doi.org/10.1016/j.jssc.2015.03.017 CrossRefGoogle Scholar
  2. 2.
    Tada S, Isoda Y, Udono H et al (2013) Thermoelectric properties of p-type Mg2Si0.25Sn0.75 doped with sodium acetate and metallic sodium. J Electron Mater 43:1–5.  https://doi.org/10.1007/s11664-013-2797-3 Google Scholar
  3. 3.
    Chen X, Weathers A, Carrete J et al (2015) Twisting phonons in complex crystals with quasi-one-dimensional substructures. Nat Commun 6:6723.  https://doi.org/10.1038/ncomms7723 CrossRefGoogle Scholar
  4. 4.
    Bogala MR, Reddy RG (2017) Reaction kinetic studies of metal-doped magnesium silicides. J Mater Sci 52:11962–11976.  https://doi.org/10.1007/s10853-017-1095-5 CrossRefGoogle Scholar
  5. 5.
    Mahan JE (2004) The potential of higher manganese silicide as an optoelectronic thin film material. Thin Solid Films 461:152–159.  https://doi.org/10.1016/j.tsf.2004.02.090 CrossRefGoogle Scholar
  6. 6.
    III/17G-41D CA, Editors of the volumes (2000) Mn(n)Si(2n–m): space group, lattice parameters of Mn(n)Si(m–n) and (Mn(1–x)T(x))nSi(2n–m) systems. In: Madelung O, Rössler U, Schulz M (eds) Non-tetrahedrally bonded elements and binary compound II. Springer, Berlin, pp 1–2Google Scholar
  7. 7.
    Kawasumi I, Sakata M, Nishida I, Masumoto K (1981) Crystal growth of manganese silicide, MnSi∼1.73 and semiconducting properties of Mn15Si26. J Mater Sci 16:355–366.  https://doi.org/10.1007/BF00738624 CrossRefGoogle Scholar
  8. 8.
    Mogilatenko A, Falke M, Teichert S et al (2002) Surfactant mediated growth of MnSi1.7 layers on (001)Si. Microelectron Eng 64:211–218.  https://doi.org/10.1016/S0167-9317(02)00789-X CrossRefGoogle Scholar
  9. 9.
    Mogilatenko A, Falke M, Hortenbach H et al (2006) Surfactant effect of Sb on the growth of MnSi1.7 layers on Si(0 0 1). Appl Surf Sci 253:561–565.  https://doi.org/10.1016/j.apsusc.2005.12.117 CrossRefGoogle Scholar
  10. 10.
    Higgins JM, Schmitt AL, Guzei IA, Jin S (2008) Higher manganese silicide nanowires of nowotny chimney ladder phase. J Am Chem Soc 130:16086–16094.  https://doi.org/10.1021/ja8065122 CrossRefGoogle Scholar
  11. 11.
    Liu H, She G, Ling S et al (2011) Ferromagnetic Si/Mn27Si47 core/shell nanowire arrays. J Appl Phys 109:4–8.  https://doi.org/10.1063/1.3548939 Google Scholar
  12. 12.
    Pokhrel A, Degregorio ZP, Higgins JM et al (2013) Vapor phase conversion synthesis of higher manganese silicide (MnSi1.75) nanowire arrays for thermoelectric applications. Chem Mater 25:632–638.  https://doi.org/10.1021/cm3040032 CrossRefGoogle Scholar
  13. 13.
    Migas D, Shaposhnikov V, Filonov A et al (2008) Ab initio study of the band structures of different phases of higher manganese silicides. Phys Rev B 77:1–9.  https://doi.org/10.1103/PhysRevB.77.075205 CrossRefGoogle Scholar
  14. 14.
    Caprara S, Kulatov E, Tugushev VV (2012) Half-metallic spin polarized electron states in the chimney-ladder higher manganese silicides MnSi1−x (x = 1.75 − 1.73) with silicon vacancies. Eur Phys J B 85:149.  https://doi.org/10.1140/epjb/e2012-30034-2 CrossRefGoogle Scholar
  15. 15.
    Ye HQ, Amelinckx S (1986) High-resolution electron microscopic study of manganese silicides MnSi2−x. J Solid State Chem 61:8–39.  https://doi.org/10.1016/0022-4596(86)90003-4 CrossRefGoogle Scholar
  16. 16.
    De Ridder R, Amelinckx S (1971) The structure of defect manganese silicides. Mater Res Bull 6:1223–1234.  https://doi.org/10.1016/0025-5408(71)90058-4 CrossRefGoogle Scholar
  17. 17.
    Miyazaki Y, Saito Y, Hayashi K et al (2011) Preparation and thermoelectric properties of a chimney-ladder (Mn1−xFex)Si γ (γ ∼ 1.7) solid solution. Jpn J Appl Phys 50:35804.  https://doi.org/10.1143/JJAP.50.035804 CrossRefGoogle Scholar
  18. 18.
    Allam A, Boulet P, Record MC (2014) Substitutional atom influence on the electronic and transport properties of Mn4Si7. J Electron Mater 43:761–773.  https://doi.org/10.1007/s11664-013-2936-x CrossRefGoogle Scholar
  19. 19.
    Allam A, Boulet P, Record M-C (2014) DFT calculations of electronic and transport properties of substituted Mn4Si7. J Alloys Compd 584:279–288.  https://doi.org/10.1016/j.jallcom.2013.09.069 CrossRefGoogle Scholar
  20. 20.
    Hou QR, Gu BF, Chen YB et al (2014) Layer-by-layer deposition of MnSi1.7 film with high Seebeck coefficient and low electrical resistivity. Mater Chem Phys 146:346–353.  https://doi.org/10.1016/j.matchemphys.2014.03.035 CrossRefGoogle Scholar
  21. 21.
    Hou QR, Zhao W, Chen YB, He YJ (2010) Preparation of n-type nano-scale MnSi1.7 films by addition of iron. Mater Chem Phys 121:103–108.  https://doi.org/10.1016/j.matchemphys.2010.01.016 CrossRefGoogle Scholar
  22. 22.
    Hou QR, Gu BF, Chen YB (2014) Cu-induced Seebeck peak in HMS/Si film. Mod Phys Lett B 28:1450176.  https://doi.org/10.1142/S0217984914501760 CrossRefGoogle Scholar
  23. 23.
    Hou QR, Zhao W, Chen YB, He YJ (2009) Preparation of n-type higher manganese silicide films by magnetron sputtering. Int J Mod Phys B 23:3331–3348.  https://doi.org/10.1142/S0217979209052881 CrossRefGoogle Scholar
  24. 24.
    Flieher G, Völlenkle H, Nowotny H (1968) Neue Abkömmlinge der TiSi2-Struktur. Monatshefte für Chemier Chemie 99:2408–2415.  https://doi.org/10.1007/BF01154358 CrossRefGoogle Scholar
  25. 25.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186.  https://doi.org/10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  26. 26.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561.  https://doi.org/10.1103/PhysRevB.47.558 CrossRefGoogle Scholar
  27. 27.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979.  https://doi.org/10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868.  https://doi.org/10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  29. 29.
    Gajdoš M, Hummer K, Kresse G et al (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73:45112.  https://doi.org/10.1103/PhysRevB.73.045112 CrossRefGoogle Scholar
  30. 30.
    Tarasov IA, Visotin MA, Aleksandrovsky AS et al (2017) Si/Fe flux ratio influence on growth and physical properties of polycrystalline β-FeSi2 thin films on Si(100) surface. J Magn Magn Mater 440:144–152.  https://doi.org/10.1016/j.jmmm.2016.12.084 CrossRefGoogle Scholar
  31. 31.
    Tarasov AS, Lukyanenko AV, Tarasov IA et al (2017) Approach to form planar structures based on epitaxial Fe1−xSix films grown on Si(111). Thin Solid Films 642:20–24.  https://doi.org/10.1016/j.tsf.2017.09.025 CrossRefGoogle Scholar
  32. 32.
    Solovyov LA (2004) Full-profile refinement by derivative difference minimization. J Appl Crystallogr 37:743–749.  https://doi.org/10.1107/S0021889804015638 CrossRefGoogle Scholar
  33. 33.
    Akselrud L, Cardoso Gil R, Wagner-Reetz M, Grin Y (2015) Disorder in the composite crystal structure of the manganese “disilicide” MnSi1.73 from powder X-ray diffraction data. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 71:707–712.  https://doi.org/10.1107/S2052520615019757 CrossRefGoogle Scholar
  34. 34.
    Pretorius R, Theron CC, Vantomme A, Mayer JW (1999) Compound phase formation in thin film structures. Crit Rev Solid State Mater Sci 24:1–62.  https://doi.org/10.1080/10408439991329161 CrossRefGoogle Scholar
  35. 35.
    Berche A, Tédenac J, Jund P (2014) First-principles determination of the enthalpy of formation of Mn–Si phases. Solid State Commun 188:49–52.  https://doi.org/10.1016/j.ssc.2014.02.021 CrossRefGoogle Scholar
  36. 36.
    Aguf V, Pelleg J, Sinder M (2015) A note on the reaction between sputter co-deposited Mn and Si and formation of the MnSi phase. AIP Adv 5:67124.  https://doi.org/10.1063/1.4922449 CrossRefGoogle Scholar
  37. 37.
    Allam A, Boulet P, Nunes CA, Record MC (2013) Investigation of new routes for the synthesis of Mn4Si7. Metall Mater Trans A Phys Metall Mater Sci 44:1645–1650.  https://doi.org/10.1007/s11661-013-1607-0 CrossRefGoogle Scholar
  38. 38.
    Borisenko VE (2000) Semiconducting silicides. Springer Ser Mater Sci.  https://doi.org/10.1007/978-3-642-59649-0 CrossRefGoogle Scholar
  39. 39.
    Zhang L, Ivey DG (1991) Low temperature reactions of thin layers of Mn with Si. J Mater Res 6:1518.  https://doi.org/10.1557/JMR.1991.1518 CrossRefGoogle Scholar
  40. 40.
    Naito M, Nakanishi R, Machida N et al (2012) Growth of higher manganese silicides from amorphous manganese–silicon layers synthesized by ion implantation. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 272:446–449.  https://doi.org/10.1016/j.nimb.2011.01.120 CrossRefGoogle Scholar
  41. 41.
    Kajitani T, Yubuta K, Shishido T, Okada S (2010) Electron density distribution in Mn4Si7. J Electron Mater 39:1482–1487.  https://doi.org/10.1007/s11664-010-1210-8 CrossRefGoogle Scholar
  42. 42.
    Klinger M (2017) More features, more tools, more CrysTBox. J Appl Crystallogr 50:1226–1234.  https://doi.org/10.1107/S1600576717006793 CrossRefGoogle Scholar
  43. 43.
    Lee J-H (2014) Significant enhancement in the thermoelectric performance of strained nanoporous Si. Phys Chem Chem Phys 16:2425–2429.  https://doi.org/10.1039/C3CP54632B CrossRefGoogle Scholar
  44. 44.
    Xu W, Liu Y, Chen B et al (2013) Nano-inclusions: a novel approach to tune the thermal conductivity of In2O3. Phys Chem Chem Phys 15:17595.  https://doi.org/10.1039/c3cp52942h CrossRefGoogle Scholar
  45. 45.
    Dai J, Spinu L, Wang K-Y et al (2000) Channel switching and magnetoresistance of a metal-SiO2–Si structure. J Phys D Appl Phys 33:L65–L67.  https://doi.org/10.1088/0022-3727/33/11/101 CrossRefGoogle Scholar
  46. 46.
    Choi J, Nguyen VQ, Duong VT et al (2017) Formation of Fe2SiO4 thin films on Si substrates and influence of substrate to its thermoelectric transport properties. Phys B Condens Matter.  https://doi.org/10.1016/j.physb.2017.05.025 Google Scholar
  47. 47.
    Teichert S, Kilper R, Erben J et al (1996) Preparation and properties of thin polycrystalline MnSi1.73 films. Appl Surf Sci 104–105:679–684.  https://doi.org/10.1016/S0169-4332(96)00223-1 CrossRefGoogle Scholar
  48. 48.
    She X, Su X, Du H et al (2015) High thermoelectric performance of higher manganese silicides prepared by ultra-fast thermal explosion. J Mater Chem C 3:12116.  https://doi.org/10.1039/C5TC02837J CrossRefGoogle Scholar
  49. 49.
    Girard SN, Chen X, Meng F et al (2014) Thermoelectric properties of undoped high purity higher manganese silicides grown by chemical vapor transport. Chem Mater 26:5097–5104CrossRefGoogle Scholar
  50. 50.
    Gorai P, Toberer ES, Stevanović V (2016) Thermoelectricity in transition metal compounds: the role of spin disorder. Phys Chem Chem Phys 18:31777–31786.  https://doi.org/10.1039/C6CP06943F CrossRefGoogle Scholar
  51. 51.
    Kim C-E, Soon A, Stampfl C (2016) Unraveling the origins of conduction band valley degeneracies in Mg2Si1−xSnx thermoelectrics. Phys Chem Chem Phys 18:939–946.  https://doi.org/10.1039/C5CP06163F CrossRefGoogle Scholar
  52. 52.
    Iioka M, Ishida D, Kojima S, Udono H (2013) Solution growth and optical characterization of Mn11 Si19. Phys status solidi 10:1808–1811.  https://doi.org/10.1002/pssc.201300354 CrossRefGoogle Scholar
  53. 53.
    Rebien M, Henrion W, Angermann H, Teichert S (2002) Interband optical properties of higher manganese silicide thin films. Appl Phys Lett 81:649.  https://doi.org/10.1063/1.1496135 CrossRefGoogle Scholar
  54. 54.
    Migas DB, Borisenko VE (2013) Semiconducting silicides as potential candidates for light detectors: Ab initio predictions. Phys Status Solidi Curr Top Solid State Phys 10:1658–1660.  https://doi.org/10.1002/pssc.201300341 Google Scholar
  55. 55.
    Yablonskikh MV, Yarmoshenko YM, Gerasimov EG et al (2003) Local magnetic moments at X-ray spectra of 3d metals. J Magn Magn Mater 256:396–403.  https://doi.org/10.1016/S0304-8853(02)00974-5 CrossRefGoogle Scholar
  56. 56.
    Kozina X, Karel J, Ouardi S et al (2014) Probing the electronic states of high-TMR off-stoichiometric Co2MnSi thin films by hard X-ray photoelectron spectroscopy. Phys Rev B 89:125116.  https://doi.org/10.1103/PhysRevB.89.125116 CrossRefGoogle Scholar
  57. 57.
    Yeh JJ, Lindau I (1985) Atomic subshell photoionization cross sections and asymmetry parameters: 1 ⩽ Z ⩽ 103. Atomic Data Nucl Data Tables 32:1–155.  https://doi.org/10.1016/0092-640X(85)90016-6 CrossRefGoogle Scholar
  58. 58.
    Brar VW, Wickenburg S, Panlasigui M et al (2010) Observation of carrier-density-dependent many-body effects in graphene via tunneling spectroscopy. Phys Rev Lett 104:1–4.  https://doi.org/10.1103/PhysRevLett.104.036805 CrossRefGoogle Scholar
  59. 59.
    Lischner J, Vigil-Fowler D, Louie SG (2013) Physical origin of satellites in photoemission of doped graphene: an Ab initio GW plus cumulant study. Phys Rev Lett 110:146801.  https://doi.org/10.1103/PhysRevLett.110.146801 CrossRefGoogle Scholar
  60. 60.
    Lischner J, Pálsson GK, Vigil-Fowler D et al (2015) Satellite band structure in silicon caused by electron-plasmon coupling. Phys Rev B 91:205113.  https://doi.org/10.1103/PhysRevB.91.205113 CrossRefGoogle Scholar
  61. 61.
    Kuzmenko A (2015) Guide to RefFit 1–127Google Scholar
  62. 62.
    Kuzmenko AB (2005) Kramers–Kronig constrained variational analysis of optical spectra. Rev Sci Instrum 76:83108.  https://doi.org/10.1063/1.1979470 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Federal Research Center KSC SB RASKirensky Institute of PhysicsKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.M.N. Miheev Institute of Metal Physics of the UB RASYekaterinburgRussia
  4. 4.Institute of Physics and TechnologyUral Federal UniversityYekaterinburgRussia
  5. 5.Siberian Federal University, Institute of Nanotechnology, Quantum Chemistry and SpectroscopyKrasnoyarskRussia
  6. 6.Institute of Chemistry and Chemical Technology, Federal Research Center KSC SB RASKrasnoyarskRussia
  7. 7.Siberian State Aerospace UniversityKrasnoyarskRussia
  8. 8.Institute of Natural Sciences, Ural Federal UniversityYekaterinburgRussia

Personalised recommendations