Journal of Materials Science

, Volume 53, Issue 10, pp 7506–7515 | Cite as

Energy level determination in bulk heterojunction systems using photoemission yield spectroscopy: case of P3HT:PCBM

  • Raitis GrzibovskisEmail author
  • Aivars Vembris
Electronic materials


Ultraviolet photoelectron spectroscopy (UPS) is commonly used method for energy level determination using planar heterojunction samples in either metal/organic or organic/organic systems. Only some attempts have been made in the study of bulk heterojunction systems. Photoemission yield spectroscopy (PYS) could be applied as a method for organic compound–organic compound interface studies in bulk heterojunction samples. Contrary to the UPS, PYS method does not require ultra-high vacuum, which simplifies experiment setup. Also, scanning depth of PYS is in the range of tens of nanometers, which allows studying deeper layers of the sample instead of only surface layer. In this work, poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) bulk heterojunction thin films were studied as a model system. A mass ratio between P3HT and PCBM in the system was varied from 1:0 to 1:50. Ionization energy dependence on this ratio was studied using two methods: UPS and PYS. To study the influence of the sample morphology on the PYS measurements and obtainable results, phase-separated and homogeneously distributed samples were prepared for analyses. P3HT ionization energy shift of 0.40 eV was observed in the samples made from chloroform solution. Experiments showed the need for a low degree of phase separation between P3HT and PCBM to observe P3HT ionization energy shift using PYS. On the contrary, no ionization energy shift of P3HT was observed in the UPS measurements for the same systems.



Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ2015/20 realized at the Institute of Solid State Physics, University of Latvia, is greatly acknowledged. This work has been supported by the Latvian State Research Program on Multifunctional Materials IMIS2. Jennifer Mann from Physical Electronics is greatly acknowledged for providing UPS data.


  1. 1.
    To CH, Wong FL, Lee CS, Zapien JA (2013) Transmission optimization of multilayer OLED encapsulation based on spectroscopic ellipsometry. Thin Solid Films 549:22–29. CrossRefGoogle Scholar
  2. 2.
    Cho AR, Kim EH, Park SY, Park LS (2014) Flexible OLED encapsulated with a gas barrier film and adhesive gasket. Synth Met 193:77–80. CrossRefGoogle Scholar
  3. 3.
    Lee J, Yoshikawa S, Sagawa T (2014) Fabrication of efficient organic and hybrid solar cells by fine channel mist spray coating. Sol Energy Mater Sol Cells 127:111–121. CrossRefGoogle Scholar
  4. 4.
    Albrecht S, Grootoonk B, Neubert S et al (2014) Efficient hybrid inorganic/organic tandem solar cells with tailored recombination contacts. Sol Energy Mater Sol Cells 127:157–162. CrossRefGoogle Scholar
  5. 5.
    Wang H, Ji Z, Shang L et al (2011) Nonvolatile nano-crystal floating gate OFET memory with light assisted program. Org Electron 12:1236–1240. CrossRefGoogle Scholar
  6. 6.
    Cocchi M (2013) Organic light-emitting diodes (OLEDs). Org Light Diodes Mater Dev Appl. Google Scholar
  7. 7.
    Xiao J, Liu X-K, Wang X-X et al (2014) Tailoring electronic structure of organic host for high-performance phosphorescent organic light-emitting diodes. Org Electron 15:2763–2768. CrossRefGoogle Scholar
  8. 8.
    Song S, Kim T, Bang SY et al (2013) Synthesis of the novel 2,2-bithiophene-3,3-dicarboximide-based conjugated copolymers for OPVs. Synth Met 177:65–71. CrossRefGoogle Scholar
  9. 9.
    Fan C, Yang P, Wang X et al (2011) Synthesis and organic photovoltaic (OPV) properties of triphenylamine derivatives based on a hexafluorocyclopentene “core”. Sol Energy Mater Sol Cells 95:992–1000. CrossRefGoogle Scholar
  10. 10.
    Song S, Ko S-J, Shin H et al (2013) Pyrrolo[3,2-b]pyrrole based small molecules as donor materials for OPVs. Sol Energy Mater Sol Cells 112:120–126. CrossRefGoogle Scholar
  11. 11.
    Hayashi N, Ishii H, Ouchi Y, Seki K (2003) Examination of band bending at C60/metal interfaces by the Kelvin probe method. Synth Met 137:1377–1378. CrossRefGoogle Scholar
  12. 12.
    Ito E, Oji H, Hayashi N et al (2001) Electronic structures of TPD/metal interfaces studied by photoemission and Kelvin probe method. Appl Surf Sci 176:407–411. CrossRefGoogle Scholar
  13. 13.
    Beerbom MM, Lägel B, Cascio AJ et al (2006) Direct comparison of photoemission spectroscopy and in situ Kelvin probe work function measurements on indium tin oxide films. J Electron Spec Relat Phenom 152:12–17. CrossRefGoogle Scholar
  14. 14.
    Gao Y (2010) Surface analytical studies of interfaces in organic semiconductor devices. Mater Sci Eng R Rep 68:39–87. CrossRefGoogle Scholar
  15. 15.
    Tang JX, Tong SW, Lee CS et al (2003) Photoemission study of interface formation between ytterbium and tris-(8-hydroxyquinoline) aluminum. Chem Phys Lett 380:63–69. CrossRefGoogle Scholar
  16. 16.
    Schwieger T, Peisert H, Knupfer M (2004) Direct observation of interfacial charge transfer from silver to organic semiconductors. Chem Phys Lett 384:197–202. CrossRefGoogle Scholar
  17. 17.
    Park M, Woong J (2017) Anthracene-based perylene diimide electron-acceptor for fullerene-free organic solar cells. Dye Pigment 143:301–307. CrossRefGoogle Scholar
  18. 18.
    Rybakiewicz R, Gawrys P, Tsikritzis D et al (2013) Electronic properties of semiconducting naphthalene bisimide derivatives—Ultraviolet photoelectron spectroscopy versus electrochemistry. Electrochim Acta 96:13–17. CrossRefGoogle Scholar
  19. 19.
    Salaneck WR (2009) Classical ultraviolet photoelectron spectroscopy of polymers. J Electron Spec Relat Phenom 174:3–9. CrossRefGoogle Scholar
  20. 20.
    Braun S, Salaneck WR, Fahlman M (2009) Energy-level alignment at organic/metal and organic/organic interfaces. Adv Mater 21:1450–1472. CrossRefGoogle Scholar
  21. 21.
    Xu Z, Chen L-M, Chen M-H et al (2009) Energy level alignment of poly(3-hexylthiophene): [6]-phenyl C[sub 61] butyric acid methyl ester bulk heterojunction. Appl Phys Lett 95:013301. CrossRefGoogle Scholar
  22. 22.
    Tsoi WC, Spencer SJ, Yang L et al (2011) Effect of crystallization on the electronic energy levels and thin film morphology of P3HT:PCBM blends. Macromolecules 44:2944–2952. CrossRefGoogle Scholar
  23. 23.
    Guan Z-L, Kim JB, Wang H et al (2010) Direct determination of the electronic structure of the poly(3-hexylthiophene):phenyl-[6]-C61 butyric acid methyl ester blend. Org Electron 11:1779–1785. CrossRefGoogle Scholar
  24. 24.
    El-Sayed A, Borghetti P, Goiri E et al (2013) Understanding energy-level alignment in donor à acceptor/metal interfaces from core-level shifts. ACS Nano 7:6914–6920. CrossRefGoogle Scholar
  25. 25.
    Aygul U, Hintz H, Egelhaaf H et al (2013) Energy level alignment of a P3HT/fullerene blend during the initial steps of degradation. J Phys Chem C 117:4992–4998. CrossRefGoogle Scholar
  26. 26.
    Kanai K, Honda M, Ishii H et al (2012) Interface electronic structure between the organic semiconductor film and electrode metal probed by photoelectron yield spectroscopy. Org Electron 13:309–319. CrossRefGoogle Scholar
  27. 27.
    Honda M, Kanai K, Komatsu K et al (2007) Atmospheric effect of air, N[sub 2], O[sub 2], and water vapor on the ionization energy of titanyl phthalocyanine thin film studied by photoemission yield spectroscopy. J Appl Phys 102:103704. CrossRefGoogle Scholar
  28. 28.
    Grigalevicius S, Blazys G (2002) 3, 6-Di (N-diphenylamino)-9-phenylcarbazole and its methyl-substituted derivative as novel hole-transporting amorphous molecular materials. Synth Met 128:127–131. CrossRefGoogle Scholar
  29. 29.
    Seah M, Dench W (1979) Quantitative electron spectroscopy of surfaces: a standard database for electron inelastic mean free paths in solids. Surf Interface Anal 1:2–11. CrossRefGoogle Scholar
  30. 30.
    Monjushiro H, Watanabe I, Yokoyama Y (1991) Ultraviolet photoelectron yield spectra of thin gold films measured in air. Anal Sci 7:543–547. CrossRefGoogle Scholar
  31. 31.
    Banoukepa GDR, Fujii A, Shimizu Y, Ozaki M (2015) 1,3,5-Tris(phenyl-2-benzimidazole)-benzene cathode buffer layer thickness dependence in solution-processable organic solar cell based on 1,4,8,11,15,18,22,25-octahexylphthalocyanine. Jpn J Appl Phys 11:4–9. Google Scholar
  32. 32.
    Grzibovskis R, Vembris A (2016) Study of the P3HT/PCBM interface using photoemission yield spectroscopy. Proc SPIE 9895:98950Q. CrossRefGoogle Scholar
  33. 33.
    Nam S, Shin M, Park S et al (2012) All-polymer solar cells with bulk heterojunction nanolayers of chemically doped electron-donating and electron-accepting polymers. Phys Chem Chem Phys 14:15046–15053. CrossRefGoogle Scholar
  34. 34.
    Lu Y, Wang Y, Feng Z et al (2012) Temperature-dependent morphology evolution of P3HT:PCBM blend solar cells during annealing processes. Synth Met 162:2039–2046. CrossRefGoogle Scholar
  35. 35.
    Fukuda T, Toda A, Takahira K et al (2016) Molecular ordering of spin-coated and electrosprayed P3HT:PCBM thin films and their applications to photovoltaic cell. Thin Solid Films 612:373–380. CrossRefGoogle Scholar
  36. 36.
    Baek W-H, Yang H, Yoon T-S et al (2009) Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells. Sol Energy Mater Sol Cells 93:1263–1267. CrossRefGoogle Scholar
  37. 37.
    Shen Y, Li K, Majumdar N et al (2011) Bulk and contact resistance in P3HT:PCBM heterojunction solar cells. Sol Energy Mater Sol Cells 95:2314–2317. CrossRefGoogle Scholar
  38. 38.
    Baek W-H, Yoon T-S, Lee HH, Kim Y-S (2010) Composition-dependent phase separation of P3HT:PCBM composites for high performance organic solar cells. Org Electron 11:933–937. CrossRefGoogle Scholar
  39. 39.
    Chen S, Zeng W, Su X et al (2015) Effect of preparation parameters on performance of P3HT:PCBM solar cells. Mater Sci Semicond Process 39:441–446. CrossRefGoogle Scholar
  40. 40.
    Müllerová J, Kaiser M, Nádaždy V et al (2016) Optical absorption study of P3HT:PCBM blend photo-oxidation for bulk heterojunction solar cells. Sol Energy 134:294–301. CrossRefGoogle Scholar
  41. 41.
    Grzibovskis R, Vembris A, Pudzs K (2016) Relation between molecule ionization energy, film thickness and morphology of two indandione derivatives thin films. J Phys Chem Solids 95:12–18. CrossRefGoogle Scholar
  42. 42.
    Xu Z, Chen L-M, Yang G et al (2009) Vertical phase separation in Poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells. Adv Funct Mater 19:1227–1234. CrossRefGoogle Scholar
  43. 43.
    Swinnen A, Haeldermans I, van de Ven M et al (2006) Tuning the Dimensions of C60-Based Needlelike Crystals in Blended Thin Films. Adv Funct Mater 16:760–765CrossRefGoogle Scholar
  44. 44.
    Dang MT, Wantz G, Bejbouji H et al (2011) Polymeric solar cells based on P3HT:PCBM: Role of the casting solvent. Sol Energy Mater Sol Cells 95:3408–3418. CrossRefGoogle Scholar
  45. 45.
    Kane EO (1962) Theory of photoelectric emission from semiconductors. Phys Rev 127:131–141CrossRefGoogle Scholar
  46. 46.
    Ow-Yang CW, Jia J, Aytun T et al (2014) Work function tuning of tin-doped indium oxide electrodes with solution-processed lithium fluoride. Thin Solid Films 559:58–63. CrossRefGoogle Scholar
  47. 47.
    Ozawa Y, Nakayama Y, Machida S et al (2014) Maximum probing depth of low-energy photoelectrons in an amorphous organic semiconductor film. J Electron Spectros Relat Phenom 197:17–21. CrossRefGoogle Scholar
  48. 48.
    Aarnio H, Sehati P, Braun S et al (2011) Spontaneous charge transfer and dipole formation at the interface between P3HT and PCBM HOMO. Adv Energy Mater. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations