Advertisement

Journal of Materials Science

, Volume 54, Issue 8, pp 6471–6487 | Cite as

Novel tape-cast SiOC-based porous ceramic electrode materials for potential application in bioelectrochemical systems

  • Thamires Canuto de Almeida e Silva
  • Viviane Fernandes Kettermann
  • Claudia Pereira
  • Manuel Simões
  • Michaela WilhelmEmail author
  • Kurosch Rezwan
Energy materials
  • 58 Downloads

Abstract

One alternative to improve electrochemical performance and long-term applicability in microbial bioelectrochemical systems (BESs) is the use of porous ceramic electrodes. In this work, electrodes of polymer-derived ceramics based on poly(silsesquioxanes) are synthesized, tailoring the properties by varying pyrolysis temperatures and incorporating conductive phases. Carbon (graphite, carbon black) and metal-based (stainless steel/Cu grids, Co/Ni particles) materials are incorporated into the silicon oxycarbide (SiOC) matrix. The influence of pyrolysis temperature and incorporation of conductive materials on functional properties and electrical conductivity is discussed. Furthermore, this study provides the first investigation of biofilm development on SiOC-based ceramic surfaces with Escherichia coli and Bacillus cereus. SiOC-based ceramics with DC conductivity values at room temperature in the semiconductor range (0.044–0.385 S cm−1) were obtained, with the highest values achieved by Co and Ni particles incorporation and in situ formation of CNTs. Adjustment in hydrophilicity and specific surface areas (6.21–263.45 m2 g−1) is realized by the pyrolysis. The biofilm studies reveal adhesion in the first 2 h for most of the surfaces, with higher bacterial adhesion and biofilm formation with the E. coli. The biocompatibility in terms of bacterial attachment and conductivity values comparable to a commercial carbon felt support the applicability of the developed SiOC-based materials as promising new class of electrodes for BES.

Notes

Acknowledgements

This work was financially supported by The Brazilian National Council for Scientific and Technological Development (CNPq) through the program Science without Borders within the process Number 232484/2014-7. Additional support was provided by the Research Training Group GRK 1860 Micro-, meso- and macroporous Nonmetallic Materials: Fundamental and Applications (MIMENIMA) and German Federal Ministry of Education and Research (BMBF), (INNO INDIGO project—01DQ15013). Present work has been also financially supported by projects POCI-01-0145-FEDER-030219; POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy–UID/EQU/00511/2013) funded by the European Regional Development Fund (ERDF), through COMPETE2020–Programa Operacional Competitividade e Internacionalização (POCI) and by national funds, through FCT–Fundação para a Ciência e a Tecnologia; NORTE-01-0145-FEDER-000005–LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Helpful discussions about the electrical properties of the materials with Dr. P. Moni are also gratefully acknowledged.

Compliance with ethical standards

Conflict of interests

There are no conflicts to declare.

Data availability

The datasets generated during and/or analyzed during the current work are available from the corresponding author on reasonable request.

Supplementary material

10853_2018_3309_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1123 kb)

References

  1. 1.
    Conway BE (2013) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, New YorkGoogle Scholar
  2. 2.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828.  https://doi.org/10.1039/c1cs15060j CrossRefGoogle Scholar
  3. 3.
    Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614.  https://doi.org/10.1039/c6cs00776g CrossRefGoogle Scholar
  4. 4.
    Fergus JW (2008) A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors. Sensor Actuat B-Chem 134(2):1034–1041.  https://doi.org/10.1016/j.snb.2008.07.005 CrossRefGoogle Scholar
  5. 5.
    Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352.  https://doi.org/10.1038/35104620 CrossRefGoogle Scholar
  6. 6.
    Nitta N, Wu FX, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264.  https://doi.org/10.1016/j.mattod.2014.10.040 CrossRefGoogle Scholar
  7. 7.
    Zhou MH, Chi ML, Luo JM, He HH, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196(10):4427–4435.  https://doi.org/10.1016/j.jpowsour.2011.01.012 CrossRefGoogle Scholar
  8. 8.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377.  https://doi.org/10.1038/nmat1368 CrossRefGoogle Scholar
  9. 9.
    McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108(7):2646–2687.  https://doi.org/10.1021/cr068076m CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy 34(11):4889–4899.  https://doi.org/10.1016/j.ijhydene.2009.04.005 CrossRefGoogle Scholar
  11. 11.
    Yi Y, Tornow J, Willinger E, Willinger MG, Ranjan C, Schlogl R (2015) Electrochemical degradation of multiwall carbon nanotubes at high anodic potential for oxygen evolution in acidic media. ChemElectroChem 2(12):1929–1937.  https://doi.org/10.1002/celc.201500268 CrossRefGoogle Scholar
  12. 12.
    Verbrugge MW, Liu P (2005) Microstructural analysis and mathematical modeling of electric double-layer supercapacitors. J Electrochem Soc 152(5):D79–D87.  https://doi.org/10.1149/1.1878052 CrossRefGoogle Scholar
  13. 13.
    ElMekawy A, Hegab HM, Dominguez-Benetton X, Pant D (2013) Internal resistance of microfluidic microbial fuel cell: challenges and potential opportunities. Bioresour Technol 142:672–682.  https://doi.org/10.1016/j.biortech.2013.05.061 CrossRefGoogle Scholar
  14. 14.
    Thorne R, Hu HN, Schneider K, Bombelli P, Fisher A, Peter LM, Dent A, Cameron PJ (2011) Porous ceramic anode materials for photo-microbial fuel cells. J Mater Chem 21(44):18055–18060.  https://doi.org/10.1039/c1jm13058g CrossRefGoogle Scholar
  15. 15.
    Colombo P, Mera G, Riedel R, Soraru GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93(7):1805–1837.  https://doi.org/10.1111/j.1551-2916.2010.03876.x Google Scholar
  16. 16.
    Prenzel T, Wilhelm M, Rezwan K (2013) Pyrolyzed polysiloxane membranes with tailorable hydrophobicity, porosity and high specific surface area. Microporous Mesoporous Mat 169:160–167.  https://doi.org/10.1016/j.micromeso.2012.10.014 CrossRefGoogle Scholar
  17. 17.
    (2013) MAX phases and ultra-high temperature ceramics for extreme environments. In: Low IM, Sakka Y, and Hu CF, (eds). Subscription and registration required for access. Engineering Science Reference, Hershey PAGoogle Scholar
  18. 18.
    Harms C, Adam M, Soliman KA, Wilhelm M, Kibler LA, Jacob T, Grathwohl G (2014) New electrocatalysts with pyrolyzed siloxane matrix. Electrocatalysis 5(3):301–309.  https://doi.org/10.1007/s12678-014-0190-5 CrossRefGoogle Scholar
  19. 19.
    Pradeep VS, Ayana DG, Graczyk-Zajac M, Soraru GD, Riedel R (2015) High rate capability of SiOC ceramic Aerogels with tailored porosity as anode materials for li-ion batteries. Electrochim Acta 157:41–45.  https://doi.org/10.1016/j.electacta.2015.01.088 CrossRefGoogle Scholar
  20. 20.
    Kolathodi MS, David L, Abass MA, Singh G (2016) Polysiloxane-functionalized graphene oxide paper: pyrolysis and performance as a Li-ion battery and supercapacitor electrode. RSC Adv 6(78):74323–74331.  https://doi.org/10.1039/c6ra15746g CrossRefGoogle Scholar
  21. 21.
    Abass MA, Syed AA, Gervais C, Singh G (2017) Synthesis and electrochemical performance of a polymer-derived silicon oxycarbide/boron nitride nanotube composite. RSC Adv 7(35):21576–21584.  https://doi.org/10.1039/c7ra01545c CrossRefGoogle Scholar
  22. 22.
    Colombo P, Gambaryan-Roisman T, Scheffler M, Buhler P, Greil P (2001) Conductive ceramic foams from preceramic polymers. J Am Ceram Soc 84(10):2265–2268CrossRefGoogle Scholar
  23. 23.
    Drillet JF, Adam M, Barg S, Herter A, Koch D, Schmidt VM, Wilhelm M (2010) Development of a novel zinc/air fuel cell with a Zn foam anode, a PVA/KOH membrane and a MnO2/SiOC-based air cathode. ECS Trans 28(32):13–24.  https://doi.org/10.1149/1.3506337 CrossRefGoogle Scholar
  24. 24.
    Moni P, Wilhelm M, Rezwan K (2017) The influence of carbon nanotubes and graphene oxide sheets on the morphology, porosity, surface characteristics and thermal and electrical properties of polysiloxane derived ceramics. RSC Adv 7(60):37559–37567.  https://doi.org/10.1039/c7ra01937h CrossRefGoogle Scholar
  25. 25.
    Scheffler M, Greil P, Berger A, Pippel E, Woltersdorf J (2004) Nickel-catalyzed in situ formation of carbon nanotubes and turbostratic carbon in polymer-derived ceramics. Mater Chem Phys 84(1):131–139.  https://doi.org/10.1016/j.matchemphys.2003.11.003 CrossRefGoogle Scholar
  26. 26.
    Wu YL, Zhang XL, Li SH, Lv XY, Cheng Y, Wang XM (2013) Microbial biofuel cell operating effectively through carbon nanotube blended with gold-titania nanocomposites modified electrode. Electrochim Acta 109:328–332.  https://doi.org/10.1016/j.electacta.2013.07.166 CrossRefGoogle Scholar
  27. 27.
    Mehdinia A, Ziaei E, Jabbari A (2014) Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation. Int J Hydrogen Energy 39(20):10724–10730.  https://doi.org/10.1016/j.ijhydene.2014.05.008 CrossRefGoogle Scholar
  28. 28.
    Varanasi JL, Nayak AK, Sohn Y, Pradhan D, Das D (2016) Improvement of power generation of microbial fuel cell by integrating tungsten oxide electrocatalyst with pure or mixed culture biocatalysts. Electrochim Acta 199:154–163.  https://doi.org/10.1016/j.electacta.2016.03.152 CrossRefGoogle Scholar
  29. 29.
    Prenzel T, Guedes TLM, Schlüter F, Wilhelm M, Rezwan K (2014) Tailoring surfaces of hybrid ceramics for gas adsorption—from alkanes to CO2. Sep Purif Technol 129:80–89.  https://doi.org/10.1016/j.seppur.2014.03.029 CrossRefGoogle Scholar
  30. 30.
    Simões M, Cleto S, Pereira MO, Vieira MJ (2007) Influence of biofilm composition on the resistance to detachment. Water Sci Technol 55(8–9):473–480.  https://doi.org/10.2166/wst.2007.293 CrossRefGoogle Scholar
  31. 31.
    Lemos M, Gomes I, Mergulhão F, Melo L, Simões M (2015) The effects of surface type on the removal of Bacillus cereus and Pseudomonas fluorescens single and dual species biofilms. Food Bioprod Process 93:234–241.  https://doi.org/10.1016/j.fbp.2014.08.009 CrossRefGoogle Scholar
  32. 32.
    Meireles A, Ferreira C, Melo L, Simões M (2017) Comparative stability and efficacy of selected chlorine-based biocides against Escherichia coli in planktonic and biofilm states. Food Res Int 102:511–518.  https://doi.org/10.1016/j.foodres.2017.09.033 CrossRefGoogle Scholar
  33. 33.
    Islam MA, Ethiraj B, Cheng CK, Yousuf A, Khan MMR (2017) Electrogenic and antimethanogenic properties of Bacillus cereus for enhanced power generation in anaerobic sludge-driven microbial fuel cells. Energy Fuels 31(6):6132–6139.  https://doi.org/10.1021/acs.energyfuels.7b00434 CrossRefGoogle Scholar
  34. 34.
    Malheiro J, Gomes I, Borges A, Bastos MMSM, Maillard JY, Borges F, Simões M (2016) Phytochemical profiling as a solution to palliate disinfectant limitations. Biofouling 32(9):1007–1016.  https://doi.org/10.1080/08927014.2016.1220550 CrossRefGoogle Scholar
  35. 35.
    Wilhelm M, Soltmann C, Koch D, Grathwohl G (2005) Ceramers—functional materials for adsorption techniques. J Eur Ceram Soc 25(2–3):271–276.  https://doi.org/10.1016/j.jeurceramsoc.2004.08.008 CrossRefGoogle Scholar
  36. 36.
    Adam M, Vakifahmetoglu C, Colombo P, Wilhelm M, Grathwohl G (2014) Polysiloxane—derived ceramics containing nanowires with catalytically active tips. J Am Ceram Soc 97(3):959–966.  https://doi.org/10.1111/jace.12708 CrossRefGoogle Scholar
  37. 37.
    Colombo P, Abdirashid MO, Guglielmi M, Esposti LMD, Agostini L (1994) Preparation of ceramic composites by active-ftller-controlled-polymer-pyrolysis. MRS Proceedings 346:403.  https://doi.org/10.1557/PROC-346-403 CrossRefGoogle Scholar
  38. 38.
    Greil P (1998) Near net shape manufacturing of polymer derived ceramics. J Eur Ceram Soc 18(13):1905–1914.  https://doi.org/10.1016/S0955-2219(98)00129-0 CrossRefGoogle Scholar
  39. 39.
    Lee SW, Jeon BY, Park DH (2010) Effect of bacterial cell size on electricity generation in a single-compartmented microbial fuel cell. Biotechnol Lett 32(4):483–487.  https://doi.org/10.1007/s10529-009-0184-1 CrossRefGoogle Scholar
  40. 40.
    Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732.  https://doi.org/10.1021/ja01864a025 CrossRefGoogle Scholar
  41. 41.
    IUPAC (1972) Manual of symbols and terminology for physicochemical quantities and units, vol 31. Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Part 1. London Butterworths, Bristol, UKGoogle Scholar
  42. 42.
    Colombo P (2008) Engineering porosity in polymer-derived ceramics. J Eur Ceram Soc 28(7):1389–1395.  https://doi.org/10.1016/j.jeurceramsoc.2007.12.002 CrossRefGoogle Scholar
  43. 43.
    Schmidt H, Koch D, Grathwohl G, Colombo P (2001) Micro-/macroporous ceramics from preceramic precursors. J Am Ceram Soc 84(10):2252–2255CrossRefGoogle Scholar
  44. 44.
    Wilhelm M, Adam M, Bäumer M, Grathwohl G (2008) Synthesis and properties of porous hybrid materials containing metallic nanoparticles. Adv Eng Mater 10(3):241–245.  https://doi.org/10.1002/adem.200800019 CrossRefGoogle Scholar
  45. 45.
    Duan LQ, Ma QS (2012) Effect of pyrolysis temperature on the pore structure evolution of polysiloxane-derived ceramics. Ceram Int 38(4):2667–2671.  https://doi.org/10.1016/j.ceramint.2011.11.033 CrossRefGoogle Scholar
  46. 46.
    Brequel H, Parmentier J, Sorar GD, Schiffini L, Enzo S (1999) Study of the phase separation in amorphous silicon oxycarbide glasses under heat treatment. Nanostruct Mater 11(6):721–731.  https://doi.org/10.1016/S0965-9773(99)00360-8 CrossRefGoogle Scholar
  47. 47.
    Zhang X, Gao J, Hong C, Han J, Han W (2013) Observation of SiC nanodots and nanowires in situ growth in SiOC ceramics. CrystEngComm 15(38):7803–7807.  https://doi.org/10.1039/C3CE40924D CrossRefGoogle Scholar
  48. 48.
    Song F, Koo H, Ren D (2015) Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res 94(8):1027–1034.  https://doi.org/10.1177/0022034515587690 CrossRefGoogle Scholar
  49. 49.
    Zhao ZB, An SS, Xie HJ, Han XL, Wang FH, Jiang Y (2015) The relationship between the hydrophilicity and surface chemical composition microphase separation structure of multicomponent silicone hydrogels. J Phys Chem B 119(30):9780–9786.  https://doi.org/10.1021/acs.jpcb.5b04202 CrossRefGoogle Scholar
  50. 50.
    Matsuda T, Ito S (1994) Surface coating of hydrophilic-hydrophobic block-copolymers on a poly(acrylonitrile) hemodialyzer reduces platelet-adhesion and its transmembrane stimulation. Biomaterials 15(6):417–422.  https://doi.org/10.1016/0142-9612(94)90219-4 CrossRefGoogle Scholar
  51. 51.
    Guo K, Freguia S, Dennis PG, Chen X, Donose BC, Keller J, Gooding JJ, Rabaey K (2013) Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ Sci Technol 47(13):7563–7570.  https://doi.org/10.1021/es400901u CrossRefGoogle Scholar
  52. 52.
    Santoro C, Guilizzoni M, Correa Baena JP, Pasaogullari U, Casalegno A, Li B, Babanova S, Artyushkova K, Atanassov P (2014) The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 67:128–139.  https://doi.org/10.1016/j.carbon.2013.09.071 CrossRefGoogle Scholar
  53. 53.
    Bajracharya S, ElMekawy A, Srikanth S, Pant D (2015) Cathodes for microbial fuel cells. microbial electrochemical and fuel cells: fundamentals and applications. Woodhead Publishing, Cambridge, pp 179–213Google Scholar
  54. 54.
    Li A, Han M, Chan SH, N-t Nguyen (2010) Effects of hydrophobicity of the cathode catalyst layer on the performance of a PEM fuel cell. Electrochim Acta 55(8):2706–2711.  https://doi.org/10.1016/j.electacta.2009.12.048 CrossRefGoogle Scholar
  55. 55.
    Jonscher AK (1977) Universal dielectric response. Nature 267(5613):673–679.  https://doi.org/10.1038/267673a0 CrossRefGoogle Scholar
  56. 56.
    Cordelair J, Greil P (2000) Electrical conductivity measurements as a microprobe for structure transitions in polysiloxane derived Si–O–C ceramics. J Eur Ceram Soc 20(12):1947–1957.  https://doi.org/10.1016/S0955-2219(00)00068-6 CrossRefGoogle Scholar
  57. 57.
    Lu K, Erb D, Liu MY (2016) Phase transformation, oxidation stability, and electrical conductivity of TiO2-polysiloxane derived ceramics. J Mater Sci 51(22):10166–10177.  https://doi.org/10.1007/s10853-016-0244-6 CrossRefGoogle Scholar
  58. 58.
    Monthioux M, Delverdier O (1996) Thermal behavior of (organosilicon) polymer-derived ceramics. V: main facts and trends. J Eur Ceram Soc 16(7):721–737.  https://doi.org/10.1016/0955-2219(95)00186-7 CrossRefGoogle Scholar
  59. 59.
    Prabu M, Selvasekarapandian S, Reddy MV, Chowdari BVR (2012) Impedance studies on the 5-V cathode material, LiCoPO4. J Solid State Electrochem 16(5):1833–1839.  https://doi.org/10.1007/s10008-012-1670-2 CrossRefGoogle Scholar
  60. 60.
    Dyre JC, Schroder TB (2000) Universality of ac conduction in disordered solids. Rev Mod Phys 72(3):873–892.  https://doi.org/10.1103/RevModPhys.72.873 CrossRefGoogle Scholar
  61. 61.
    Wang XA, Shi ZC, Chen M, Fan RH, Yan KL, Sun K, Pan SB, Yu MX (2014) Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method. J Am Ceram Soc 97(10):3223–3229.  https://doi.org/10.1111/jace.13113 CrossRefGoogle Scholar
  62. 62.
    Zhang ZD, Cheng CB, Han X (2016) Percolative cobalt/silicon nitride composites with tunable negative electromagnetic parameters. RSC Adv 6(86):82478–82483.  https://doi.org/10.1039/c6ra15529d CrossRefGoogle Scholar
  63. 63.
    Bos R, van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study. FEMS Microbiol Rev 23(2):179–230CrossRefGoogle Scholar
  64. 64.
    Syed Khadar YA, Balamurugan A, Devarajan VP, Subramanian R, Dinesh Kumar S (2018) Synthesis, characterization and antibacterial activity of cobalt doped cerium oxide (CeO2:Co) nanoparticles by using hydrothermal method. J Mater Res Technol.  https://doi.org/10.1016/j.jmrt.2017.12.005 Google Scholar
  65. 65.
    Vahedi M, Hosseini-Jazani N, Yousefi S, Ghahremani M (2017) Evaluation of anti-bacterial effects of nickel nanoparticles on biofilm production by Staphylococcus epidermidis. Iran J Microbiol 9(3):160–168Google Scholar
  66. 66.
    Sharifahmadian O, Salimijazi HR, Fathi MH, Mostaghimi J, Pershin L (2013) Relationship between surface properties and antibacterial behavior of wire arc spray copper coatings. Surf Coat Tech 233:74–79.  https://doi.org/10.1016/j.surfcoat.2013.01.060 CrossRefGoogle Scholar
  67. 67.
    Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77(5):1541–1547.  https://doi.org/10.1128/Aem.02766-10 CrossRefGoogle Scholar
  68. 68.
    Baudler A, Schmidt I, Langner M, Greiner A, Schröder U (2015) Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energ Environ Sci 8(7):2048–2055.  https://doi.org/10.1039/C5EE00866B CrossRefGoogle Scholar
  69. 69.
    Zhu X, Logan BE (2014) Copper anode corrosion affects power generation in microbial fuel cells. J Chem Technol Biotechnol 89(3):471–474.  https://doi.org/10.1002/jctb.4156 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Bremen, Advanced CeramicsBremenGermany
  2. 2.LEPABE, Department of Chemical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal
  3. 3.MAPEX Center for Materials and ProcessesUniversity of BremenBremenGermany

Personalised recommendations