Advertisement

Journal of Materials Science

, Volume 54, Issue 8, pp 6461–6470 | Cite as

Investigation of ordered mesoporous carbon@MnO core–shell nanospheres as anode material for lithium-ion batteries

  • Tingting FengEmail author
  • Junchao Wang
  • Jian Yang
  • Mengqiang WuEmail author
Energy materials
  • 22 Downloads

Abstract

Here, we present a design of core–shell structured carbon@MnO composite nanospheres and investigate its electrochemical performance as an anode material for lithium-ion batteries. The core–shell carbon@MnO composite nanospheres are obtained from the intermediate product of carbon@MnO2 nanospheres by coating a MnO2 layer over the surface of the mesoporous carbon cores, followed by thermal treatment in an inert atmosphere. The morphology and crystal phase of the obtained nanospheres are examined, and the electrochemical properties as a lithium-ion battery anode material are studied. The results demonstrate that the ordered mesoporous carbon@MnO electrode shows remarkable enhancements in lithium storage capacity, rate capability and cycling stability, delivering an average capacity of 572 mAh g−1 at 500 mA g−1 over 1000 charge/discharge cycles. The morphology and phase of the core–shell carbon@MnO electrode material after extended cycling are examined by transmission electron microscopy and X-ray diffraction, which indicate the nanocrystalline rather than amorphous property of the cycled electrode. As MnO is a conversion-type electrode material, the potential polarization of the carbon@MnO composite electrode is also investigated, which exhibits a unique evolution as cycling proceeds.

Notes

Acknowledgements

The author gratefully acknowledges Professor Paul V. Braun of Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign (UIUC), for his useful advice and the use of his laboratory for this research wok. The author also acknowledges Li Zhao for his assistance in the acquisition of XRD patterns. The author also acknowledges Chinese Scholarship Council during her visit to UIUC, and partial support from National Natural Science Foundation of China (21503036). The research was carried out in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois at Urbana–Champaign.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Li J, Li Z, Ning F et al (2018) ACS Omega 3:1675.  https://doi.org/10.1021/acsomega.7b01832 CrossRefGoogle Scholar
  2. 2.
    Wang D, Yu Y, He H, Wang J, Zhou W, Abruña HD (2015) ACS Nano 9:1775.  https://doi.org/10.1021/nn506624g CrossRefGoogle Scholar
  3. 3.
    Ding C, Jiang X, Huang X et al (2018) Mater Res Bull 97:142.  https://doi.org/10.1016/j.materresbull.2017.08.058 CrossRefGoogle Scholar
  4. 4.
    Xia T, Xu X, Wang J et al (2015) Electrochim Acta 160:114.  https://doi.org/10.1016/j.electacta.2015.02.017 CrossRefGoogle Scholar
  5. 5.
    Huang Y, Xu Z, Mai J et al (2017) Nano Energy 41:426.  https://doi.org/10.1016/j.nanoen.2017.10.001 CrossRefGoogle Scholar
  6. 6.
    Bai Z, Ju Z, Guo C, Qian Y, Tang B, Xiong S (2014) Nanoscale 6:3268.  https://doi.org/10.1039/c3nr05676g CrossRefGoogle Scholar
  7. 7.
    Gu L, Xie W, Bai S et al (2016) Appl Surf Sci 368:298.  https://doi.org/10.1016/j.apsusc.2016.01.270 CrossRefGoogle Scholar
  8. 8.
    Jadhav HS, Thorat GM, Mun J, Seo JG (2016) J Power Sources 302:13.  https://doi.org/10.1016/j.jpowsour.2015.10.044 CrossRefGoogle Scholar
  9. 9.
    Li L, Raji A-RO, Tour JM (2013) Adv Mater 25:6298.  https://doi.org/10.1002/adma.201302915 CrossRefGoogle Scholar
  10. 10.
    Wei Y, Zi Z, Chen B et al (2018) J Alloys Compd 756:93.  https://doi.org/10.1016/j.jallcom.2018.04.331 CrossRefGoogle Scholar
  11. 11.
    Chen J, Wang Y, He X et al (2014) Electrochim Acta 142:152.  https://doi.org/10.1016/j.electacta.2014.07.089 CrossRefGoogle Scholar
  12. 12.
    Jian G, Xu Y, Lai L-C, Wang C, Zachariah MR (2014) J Mater Chem A 2:4627CrossRefGoogle Scholar
  13. 13.
    Shi S, Deng S, Zhang M, Zhao M, Yang G (2017) Electrochim Acta 224:285.  https://doi.org/10.1016/j.electacta.2016.12.080 CrossRefGoogle Scholar
  14. 14.
    Gu X, Yue J, Li L, Xue H, Yang J, Zhao X (2015) Electrochim Acta 184:250.  https://doi.org/10.1016/j.electacta.2015.10.037 CrossRefGoogle Scholar
  15. 15.
    Su H, Xu Y-F, Feng S-C et al (2015) ACS Appl Mater Interfaces 7:8488.  https://doi.org/10.1021/am509198k CrossRefGoogle Scholar
  16. 16.
    Wang J, Liu Y, Wang S, Guo X, Liu Y (2014) J Mater Chem A 2:1224.  https://doi.org/10.1039/C3TA14135G CrossRefGoogle Scholar
  17. 17.
    Zhang R, Liu J, Guo H, Tong X (2015) Mater Lett 139:55.  https://doi.org/10.1016/j.matlet.2014.10.039 CrossRefGoogle Scholar
  18. 18.
    Kim J, Hong S-A, Yoo J (2015) Chem Eng J 266:179.  https://doi.org/10.1016/j.cej.2014.12.084 CrossRefGoogle Scholar
  19. 19.
    Huang XH, Guo RQ, Wu JB, Zhang P (2014) Mater Lett 122:82.  https://doi.org/10.1016/j.matlet.2014.02.012 CrossRefGoogle Scholar
  20. 20.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nature 407:496CrossRefGoogle Scholar
  21. 21.
    Shao J, Zhou H, Zhu M, Feng J, Yuan A (2018) J Alloys Compd 768:1049.  https://doi.org/10.1016/j.jallcom.2018.07.290 CrossRefGoogle Scholar
  22. 22.
    Sheng L, Liang S, Wei T et al (2018) Energy Storage Mater 12:94.  https://doi.org/10.1016/j.ensm.2017.11.014 CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Huang G, Li Y et al (2018) J Mater Chem A 6:7227.  https://doi.org/10.1039/C8TA00940F CrossRefGoogle Scholar
  24. 24.
    Fan Z, Liang J, Yu W et al (2015) Nano Energy 16:152.  https://doi.org/10.1016/j.nanoen.2015.06.009 CrossRefGoogle Scholar
  25. 25.
    Xiao S, Pan D, Wang L et al (2016) Nanoscale 8:19343.  https://doi.org/10.1039/C6NR07802H CrossRefGoogle Scholar
  26. 26.
    Dou Y, Xu J, Ruan B et al (2016) Adv Energy Mater 6:1501835.  https://doi.org/10.1002/aenm.201501835 CrossRefGoogle Scholar
  27. 27.
    Gu D, Li W, Wang F et al (2015) Angew Chem Int Ed 54:7060.  https://doi.org/10.1002/anie.201501475 CrossRefGoogle Scholar
  28. 28.
    Zhou G, Wang D-W, Li F et al (2010) Chem Mater 22:5306.  https://doi.org/10.1021/cm101532x CrossRefGoogle Scholar
  29. 29.
    Xiao Y, Wang X, Wang W, Zhao D, Cao M (2014) ACS Appl Mater Interfaces 6:2051.  https://doi.org/10.1021/am405142p CrossRefGoogle Scholar
  30. 30.
    Li M, Xue J (2012) J Colloid Interface Sci 377:169.  https://doi.org/10.1016/j.jcis.2012.03.085 CrossRefGoogle Scholar
  31. 31.
    Gao T, Fjellvåg H, Norby P (2009) Anal Chim Acta 648:235.  https://doi.org/10.1016/j.aca.2009.06.059 CrossRefGoogle Scholar
  32. 32.
    Ramesh K, Chen L, Chen F, Liu Y, Wang Z, Han Y-F (2008) Catal Today 131:477.  https://doi.org/10.1016/j.cattod.2007.10.061 CrossRefGoogle Scholar
  33. 33.
    Kim S-W, Lee H-W, Muralidharan P et al (2011) Nano Res 4:505.  https://doi.org/10.1007/s12274-011-0106-0 CrossRefGoogle Scholar
  34. 34.
    Wang GX, Chen Y, Konstantinov K, Lindsay M, Liu HK, Dou SX (2002) J Power Sources 109:142.  https://doi.org/10.1016/S0378-7753(02)00052-6 CrossRefGoogle Scholar
  35. 35.
    Deng Y, Li Z, Shi Z, Xu H, Peng F, Chen G (2012) RSC Adv 2:4645.  https://doi.org/10.1039/C2RA20062G CrossRefGoogle Scholar
  36. 36.
    Taberna P-L, Mitra S, Poizot P, Simon P, Tarascon J-M (2006) Nat Mater 5:567CrossRefGoogle Scholar
  37. 37.
    Malini R, Uma U, Sheela T, Ganesan M, Renganathan NG (2009) Ionics 15:301.  https://doi.org/10.1007/s11581-008-0236-x CrossRefGoogle Scholar
  38. 38.
    Mai YJ, Shi SJ, Zhang D, Lu Y, Gu CD, Tu JP (2012) J Power Sources 204:155.  https://doi.org/10.1016/j.jpowsour.2011.12.038 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and EnergyUniversity of Electronic Science and Technology of China (UESTC)ChengduPeople’s Republic of China

Personalised recommendations