Advertisement

Formation mechanisms of Y–Al–O complex oxides in 9Cr-ODS steels with Al addition

  • Xiaosheng Zhou
  • Zongqing MaEmail author
  • Liming Yu
  • Yuan Huang
  • Huijun Li
  • Yongchang LiuEmail author
Metals
  • 12 Downloads

Abstract

For the Al-alloyed 9Cr-ODS steels consolidated by spark plasma sintering and annealed at 800 °C, the Y–Al–O oxides, interface structure and orientation relationships between the oxides and the matrix are studied by high-resolution transmission electron microscope technique. It is found that the spark plasma sintering can serve as a useful and effective tool to investigate the transition states in complex oxide formation. Monoclinic Y4Al2O9 (YAM), orthorhombic YAlO3 (YAP), cubic Y3Al5O12 (YAG) and Y2O3 nanoparticles are identified. Both YAM and YAG can directly precipitate from the Y2O3 particles. One individual Y2O3 particle will produce several YAM particles, while only one YAG particle can be formed within one Y2O3 particle. The majority of identified Y–Al–O oxides exhibit partially coherent interfaces with the matrix, and multiple orientation relationships are revealed.

Notes

Acknowledgements

The authors are grateful to the China National Funds for Distinguished Young Scientists (Grant No. 51325401), the National Natural Science Foundation of China (Grant Nos. 51474156 and U1660201) and the National Magnetic Confinement Fusion Energy Research Program (Grant No. 2014GB125006) for grant and financial support.

References

  1. 1.
    Zinkle SJ, Boutard JL, Hoelzer DT, Kimura A, Lindau R, Odette GR, Rieth M, Tan L, Tanigawa H (2017) Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications. Nucl Fusion 57(9):092005.  https://doi.org/10.1088/1741-4326/57/9/092005 CrossRefGoogle Scholar
  2. 2.
    Wharry JP, Swenson MJ, Yano KH (2017) A review of the irradiation evolution of dispersed oxide nanoparticles in the bcc Fe–Cr system: current understanding and future directions. J Nucl Mater 486:11–20CrossRefGoogle Scholar
  3. 3.
    Zhou X, Liu C, Yu L, Liu Y, Li H (2015) Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: a review. J Mater Sci Technol 31(3):235–242CrossRefGoogle Scholar
  4. 4.
    Ukai S, Fujiwara M (2002) Perspective of ODS alloys application in nuclear environments. J Nucl Mater 307–311:749–757CrossRefGoogle Scholar
  5. 5.
    Dadé M, Malaplate J, Garnier J, De Geuser F, Barcelo F, Wident P, Deschamps A (2017) Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe–14Cr steels. Acta Mater 127:165–177CrossRefGoogle Scholar
  6. 6.
    Odette GR, Alinger MJ, Wirth BD (2008) Recent developments in irradiation-resistant steels. Annu Rev Mater Res 38(1):471–503CrossRefGoogle Scholar
  7. 7.
    Klueh RL, Maziasz PJ, Kim IS, Heatherly L, Hoelzer DT, Hashimoto N, Kenik EA, Miyahara K (2002) Tensile and creep properties of an oxide dispersion-strengthened ferritic steel. J Nucl Mater 307–311:773–777CrossRefGoogle Scholar
  8. 8.
    Miller MK, Hoelzer DT, Kenik EA, Russell KF (2005) Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics 13(3):387–392CrossRefGoogle Scholar
  9. 9.
    Hoelzer DT, Unocic KA, Sokolov MA, Byun TS (2016) Influence of processing on the microstructure and mechanical properties of 14YWT. J Nucl Mater 471:251–265CrossRefGoogle Scholar
  10. 10.
    Schäublin R, Ramar A, Baluc N, de Castro V, Monge MA, Leguey T, Schmid N, Bonjour C (2006) Microstructural development under irradiation in European ODS ferritic/martensitic steels. J Nucl Mater 351(1):247–260CrossRefGoogle Scholar
  11. 11.
    Akasaka N, Yamashita S, Yoshitake T, Ukai S, Kimura A (2004) Microstructural changes of neutron irradiated ODS ferritic and martensitic steels. J Nucl Mater 329–333:1053–1056CrossRefGoogle Scholar
  12. 12.
    Zilnyk KD, Pradeep KG, Choi P, Sandim HRZ, Raabe D (2017) Long-term thermal stability of nanoclusters in ODS-Eurofer steel: an atom probe tomography study. J Nucl Mater 492:142–147CrossRefGoogle Scholar
  13. 13.
    Materna-Morris E, Lindau R, Schneider H-C, Möslang A (2015) Tensile behavior of EUROFER ODS steel after neutron irradiation up to 16.3 dpa between 250 and 450 °C. Fusion Eng Des 98–99:2038–2041CrossRefGoogle Scholar
  14. 14.
    Kimura A, Kasada R, Iwata N, Kishimoto H, Zhang CH, Isselin J, Dou P, Lee JH, Muthukumar N, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe TF (2011) Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. J Nucl Mater 417(1):176–179CrossRefGoogle Scholar
  15. 15.
    Zhang G, Zhou Z, Mo K, Wang P, Miao Y, Li S, Wang M, Liu X, Gong M, Almer J, Stubbins JF (2015) The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy. J Alloys Compd 648:223–228CrossRefGoogle Scholar
  16. 16.
    Zhang Z, Pantleon W (2017) Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix. Philos Mag 97(21):1824–1846CrossRefGoogle Scholar
  17. 17.
    Hsiung LL, Fluss MJ, Tumey SJ, Choi BW, Serruys Y, Willaime F, Kimura A (2010) Formation mechanism and the role of nanoparticles in Fe–Cr ODS steels developed for radiation tolerance. Phys Rev B 82(18):184103.  https://doi.org/10.1103/PhysRevB.82.184103 CrossRefGoogle Scholar
  18. 18.
    Dou P, Kimura A, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe F (2011) Polymorphic and coherency transition of Y–Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel. Acta Mater 59(3):992–1002CrossRefGoogle Scholar
  19. 19.
    Zhou X, Liu Y, Yu L, Ma Z, Guo Q, Huang Y, Li H (2017) Microstructure characteristic and mechanical property of transformable 9Cr-ODS steel fabricated by spark plasma sintering. Mater Des 132:158–169CrossRefGoogle Scholar
  20. 20.
    Li Z, Lu Z, Xie R, Lu C, Liu C (2016) Effect of spark plasma sintering temperature on microstructure and mechanical properties of 14Cr-ODS ferritic steels. Mater Sci Eng A 660:52–60CrossRefGoogle Scholar
  21. 21.
    Heintze C, Hernández-Mayoral M, Ulbricht A, Bergner F, Shariq A, Weissgärber T, Frielinghaus H (2012) Nanoscale characterization of ODS Fe–9%Cr model alloys compacted by spark plasma sintering. J Nucl Mater 428(1):139–146CrossRefGoogle Scholar
  22. 22.
    Torralba JM, Fuentes-Pacheco L, García-Rodríguez N, Campos M (2013) Development of high performance powder metallurgy steels by high-energy milling. Adv Powder Technol 24(5):813–817CrossRefGoogle Scholar
  23. 23.
    Ji G, Grosdidier T, Bozzolo N, Launois S (2007) The mechanisms of microstructure formation in a nanostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering. Intermetallics 15(2):108–118CrossRefGoogle Scholar
  24. 24.
    Mittemeijer EJ (2010) Fundamentals of materials science: The microstructure–property relationship using metals as model systems. Springer, HeidelbergGoogle Scholar
  25. 25.
    Mao X, Oh KH, Jang J (2016) Evolution of ultrafine grained microstructure and nano-sized semi-coherent oxide particles in austenitic oxide dispersion strengthened steel. Mater Charact 117:91–98CrossRefGoogle Scholar
  26. 26.
    Levin I, Brandon D (2005) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81(8):1995–2012CrossRefGoogle Scholar
  27. 27.
    Ribis J, de Carlan Y (2012) Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater 60(1):238–252CrossRefGoogle Scholar
  28. 28.
    Santos PS, Souzatoledo HS, Toledo SP (2000) Standard transition aluminas. Electron microscopy studies. Mater Res 3(4):104–114CrossRefGoogle Scholar
  29. 29.
    Zhao Q, Yu L, Liu Y, Huang Y, Guo Q, Li H, Wu J (2017) Evolution of Al-containing phases in ODS steel by hot pressing and annealing. Powder Technol 311:449–455CrossRefGoogle Scholar
  30. 30.
    Zhao Q, Yu L, Liu Y, Li H (2015) Morphology and structure evolution of Y2O3 nanoparticles in ODS steel powders during mechanical alloying and annealing. Adv Powder Technol 26(6):1578–1582CrossRefGoogle Scholar
  31. 31.
    Li X, Li J-G, Xiu Z, Huo D, Sun X (2008) Transparent Nd: YAG ceramics fabricated using nanosized γ-alumina and yttria powders. J Am Ceram Soc 92(1):241–244CrossRefGoogle Scholar
  32. 32.
    Wen L, Sun X, Xiu Z, Chen S, Tsai C-T (2004) Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics. J Eur Ceram Soc 24(9):2681–2688CrossRefGoogle Scholar
  33. 33.
    Lo J-R, Tseng T-Y (1998) Phase development and activation energy of the Y2O3–Al2O3 system by a modified sol–gel process. Mater Chem Phys 56(1):56–62CrossRefGoogle Scholar
  34. 34.
    Medraj M, Hammond R, Parvez MA, Drew RAL, Thompson WT (2006) High temperature neutron diffraction study of the Al2O3–Y2O3 system. J Eur Ceram Soc 26(16):3515–3524CrossRefGoogle Scholar
  35. 35.
    Foxman Z, Sobol O, Pinkas M, Landau A, Hähner P, Krsjak V, Meshi L (2012) Microstructural evolution of Cr-rich ODS steels as a function of heat treatment at 475 °C. Metallogr Microstruct Anal 1(3):158–164CrossRefGoogle Scholar
  36. 36.
    Li X, Li JG, Xiu Z, Huo D, Sun X (2009) Transparent Nd: YAG ceramics fabricated using nanosized γ-alumina and yttria powders. J Am Ceram Soc 92(1):241–244CrossRefGoogle Scholar
  37. 37.
    Chinnappan R (2014) Thermodynamic stability of oxide phases of Fe–Cr based ODS steels via quantum mechanical calculations. Calphad 45:188–193CrossRefGoogle Scholar
  38. 38.
    Nejman AY, Tkachenko EV, Kvichko LA, Kotok LA (1980) Conditions and macromechanism of solid-phase synthesis of yttrium aluminates. Zhurnal Neorganicheskoj Khimii 25(9):2340–2345Google Scholar
  39. 39.
    Zhou XS, Ma ZQ, Yu LM, Huang Y, Li HJ, Liu YC (2018) Influence of Al addition upon the microstructure and mechanical property of dual-phase 9Cr-ODS steels. Met Mater Int.  https://doi.org/10.1007/s12540-018-0152-1 Google Scholar
  40. 40.
    Yamamoto M, Ukai S, Hayashi S, Kaito T, Ohtsuka S (2011) Reverse phase transformation from α to γ in 9Cr-ODS ferritic steels. J Nucl Mater 417(1–3):237–240CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations