Advertisement

Journal of Materials Science

, Volume 54, Issue 7, pp 5952–5960 | Cite as

Sandwich-type porous polyimide film with improved dielectric, water resistance and mechanical properties

  • Le Xu
  • Yingyi MaEmail author
  • Junwen Xie
  • Wenlong ZhangEmail author
  • Zijian Wu
  • Zhenfeng He
Polymers
  • 39 Downloads

Abstract

The simultaneous improvement of dielectric, mechanical and water resistance properties of dielectric materials is extremely important for their practical use, but rarely been realized. Here, the comprehensive properties of polyimide (PI) film were enhanced through the construction of sandwich-type porous film using the microemulsion method. Due to the introduction of porous structure on both sides of PI film, apparent decreases were observed in dielectric constant (16.50%) and water absorption (82.7%), accompanied by increases in tensile strength (5.14%) and tensile modulus (41.17%), compared to flat PI film. Furthermore, excellent durability of low dielectric constant of the sandwich-type porous film under moist environment was demonstrated since 1.76% of increase was found upon exposing to 75% R.H. for 32 h. This provides a novel method to optimize the comprehensive properties of dielectric materials and also displays underlying insight for the development of functional materials in electronic and electric areas.

Notes

Acknowledgements

The authors acknowledge the financial support from National Natural Science Foundation of China (21604019, 21504037), the Postdoctoral Research Fund of Heilongjiang Province (LBH-Q17079), Natural Science Foundation of Heilongjiang Province of China (QC2018011), China Postdoctoral Science Foundation (2017M610212).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Grill A, Gates SM, Ryan TE, Nguyen SV, Priyadarshini D (2014) Progress in the development and understanding of advanced low k and ultralow k dielectrics for very large-scale integrated interconnects-state of the art. Appl Phys Rev 1(1):011306.  https://doi.org/10.1063/1.4861876 CrossRefGoogle Scholar
  2. 2.
    Mativenga M, Geng D, Kim B, Jang J (2015) Fully transparent and rollable electronics. ACS Appl Mater Interfaces 7(3):1578–1585CrossRefGoogle Scholar
  3. 3.
    Spechler JA, Koh TW, Herb JT, Rand BP, Arnold CB (2015) A transparent, smooth, thermally robust, conductive polyimide for flexible electronics. Adv Funct Mater 25(48):7428–7434CrossRefGoogle Scholar
  4. 4.
    Grigoras K, Keskinen J, Grοnberg L, Yli-Rantala E, Laakso S, Valimaki H, Kauranen P, Ahopelto J, Prunnila M (2016) Conformal titanium nitride in a porous silicon matrix: a nanomaterial for in-chip supercapacitors. Nano Energy 26:340–345CrossRefGoogle Scholar
  5. 5.
    Li L, Zhang JB, Peng ZW, Li YL, Gao CT, Ji YS, Ye RQ, Kim ND, Zhong QF, Yang Y, Fei HL, Ruan JD, Tour JM (2016) High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv Mater 28(5):838–845CrossRefGoogle Scholar
  6. 6.
    Jia MC, Zhou MT, Li YJ, Lu GL, Huang XY (2018) Construction of semi-fluorinated polyimides with perfluorocyclobutyl aryl ether-based side chains. Polym Chem 9(7):920–930CrossRefGoogle Scholar
  7. 7.
    Ko YG, Kwon W, Yen HJ, Chang CW, Kim DM, Kim K, Hahm SG, Lee TJ, Liou GS, Ree M (2012) Various digital memory behaviors of functional aromatic polyimides based on electron donor and acceptor substituted triphenylamines. Macromolecules 45(9):3749–3758CrossRefGoogle Scholar
  8. 8.
    Murotani E, Lee JK, Chatzichristidi M, Zakhidov AA, Taylor PG, Schwartz EL, Malliaras GG, Ober CK (2009) Cross-linkable molecular glasses: low dielectric constant materials patternable in hydrofluoroethers. ACS Appl Mater Interfaces 1(10):2363–2370CrossRefGoogle Scholar
  9. 9.
    Lifson ML, Kim MW, Greer JR, Kim BJ (2017) Enabling simultaneous extreme ultra low-k in stiff, resilient, and thermally stable nano-architected materials. Nano Lett 17(12):7737–7743CrossRefGoogle Scholar
  10. 10.
    Bei RX, Qian C, Zhang Y, Chi ZG, Liu SW, Chen XD, Xu JR, Aldred MP (2017) Intrinsic low dielectric constant polyimides: relationship between molecular structure and dielectric properties. J Mater Chem C 5(48):12807–12815CrossRefGoogle Scholar
  11. 11.
    Volksen W, Miller RD, Dubois G (2010) Low dielectric constant materials. Chem Rev 110(1):56–110CrossRefGoogle Scholar
  12. 12.
    Ishizaka T, Ishigaki A, Chatterjee M, Suzuki A, Suzuki TM, Kawanami H (2010) Continuous process for fabrication of size controlled polyimide nanoparticles using microfluidic system. Chem Commun 46(38):7214–7216CrossRefGoogle Scholar
  13. 13.
    Yuan C, Jin KK, Li K, Diao S, Tong JW, Fang Q (2013) Non-porous low-k dielectric films based on a new structural amorphous fluoropolymer. Adv Mater 25(35):4875–4878CrossRefGoogle Scholar
  14. 14.
    Lim J, Yeo H, Goh M, Ku BC, Kim SG, Lee HS, Park B, You NH (2015) Grafting of polyimide onto chemically-functionalized graphene nanosheets for mechanically-strong barrier membranes. Chem Mater 27(6):2040–2047CrossRefGoogle Scholar
  15. 15.
    Ghanem BS, Swaidan R, Litwiller E, Pinnau I (2014) Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation. Adv Mater 26(22):3688–3692CrossRefGoogle Scholar
  16. 16.
    Qian ZC, Wang Z, Chen Y, Tong SR, Ge MF, Zhao N, Xu J (2018) Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters. J Mater Chem A 6(3):828–832CrossRefGoogle Scholar
  17. 17.
    Fang QR, Zhuang ZB, Gu S, Kaspar RB, Zheng J, Wang JH, Qiu SL, Yan YS (2014) Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat Commun 5:4503.  https://doi.org/10.1038/ncomms5503 CrossRefGoogle Scholar
  18. 18.
    Jia MC, Li YJ, He CQ, Huang XY (2016) Soluble perfluorocyclobutyl aryl ether-based polyimide for high-performance dielectric material. ACS Appl Mater Interfaces 8(39):26352–26358CrossRefGoogle Scholar
  19. 19.
    Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37(7):907–974CrossRefGoogle Scholar
  20. 20.
    Liu YW, Qian C, Qu LJ, Wu YN, Zhang Y, Wu XH, Zou B, Chen WX, Chen ZQ, Chi ZG, Liu SW, Chen XD, Xu JR (2015) A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties. Chem Mater 27(19):6543–6549CrossRefGoogle Scholar
  21. 21.
    Wang X, Dai YY, Wang WM, Ren MM, Li BY, Fan C, Liu XY (2014) Fluorographene with high fluorine/carbon ratio: a nano-filler for preparing low-κ polyimide hybrid films. ACS Appl Mater Interfaces 6(18):16182–16188CrossRefGoogle Scholar
  22. 22.
    Zheng QF, Fang LM, Guo HQ, Yang KF, Cai ZY, Meador MAB, Gong SQ (2018) Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv Funct Mater 28(13):1706365.  https://doi.org/10.1002/adfm.201706365 CrossRefGoogle Scholar
  23. 23.
    Liao WH, Yang SY, Hsiao ST, Wang YS, Li SM, Ma CCM, Tien HW, Zeng SJ (2014) Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties polyimide composites. ACS Appl Mater Interfaces 6(18):15802–15812CrossRefGoogle Scholar
  24. 24.
    Li Y, Zhao JQ, Yuan YC, Shi CQ, Liu SM, Yan SJ, Zhao Y, Zhang MQ (2015) Polyimide/crown ether composite films with necklace-like supramolecular structure and improved mechanical, dielectric, and hydrophobic properties. Macromolecules 48(7):2173–2183CrossRefGoogle Scholar
  25. 25.
    Kawagishi K, Saito H, Furukawa H, Horie K (2007) Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels. Macromol Rapid Commun 28(1):96–100CrossRefGoogle Scholar
  26. 26.
    Taki K, Hosokawa K, Takagi S, Mabuchi H, Ohshima M (2013) Rapid production of ultralow dielectric constant porous polyimide films via CO2-tert-amine zwitterion-induced phase separation and subsequent photopolymerization. Macromolecules 46(6):2275–2281CrossRefGoogle Scholar
  27. 27.
    Yang SY, Jeon G, Kim JK (2012) A high density array of free standing alumina nanotubes aligned vertically on solid substrates in a large area. J Mater Chem 22(43):23017–23021CrossRefGoogle Scholar
  28. 28.
    Zhang YM, Ionov L (2014) Actuating porous polyimide films. ACS Appl Mater Interfaces 6(13):10072–10077CrossRefGoogle Scholar
  29. 29.
    Zhang H, Lin CE, Zhou MY, John AE, Zhu BK (2016) High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries. Electrochim Acta 187:125–133CrossRefGoogle Scholar
  30. 30.
    Chen Y, Shao GF, Kong Y, Shen XD, Cui S (2017) Facile preparation of cross-linked polyimide aerogels with carboxylic functionalization for CO2 capture. Chem Eng J 322:1–9CrossRefGoogle Scholar
  31. 31.
    Chen YW, Wang W, Yu WH, Yuan ZL, Kang ET, Neoh KG, Krauter B, Greiner A (2004) Nanoporous low-kappa polyimide films via poly(amic acid)s with grafted poly(ethylene glycol) side chains from a reversible addition-fragmentation chain-transfer-mediated process. Adv Funct Mater 14(5):471–478CrossRefGoogle Scholar
  32. 32.
    Chen ZG, Liu SM, Yan SJ, Shu X, Yuan YC, Huang HH, Zhao JQ (2017) Overall improvement in dielectric and mechanical properties of porous graphene fluoroxide/polyimide nanocomposite films via bubble-stretching approach. Mater Des 117:150–156CrossRefGoogle Scholar
  33. 33.
    Meador MAB, McMillon E, Sandberg A, Barrios E, Wilmoth NG, Mueller CH, Miranda FA (2014) Dielectric and other properties of polyimide aerogels containing fluorinated blocks. ACS Appl Mater Interfaces 6(9):6062–6068CrossRefGoogle Scholar
  34. 34.
    Ma YY, Zhou MC, Walter S, Liang J, Chen ZJ, Wu LX (2014) Selective adhesion and controlled activity of yeast cells on honeycomb-patterned polymer films via a microemulsion approach. Chem Commun 50(100):15882–15885CrossRefGoogle Scholar
  35. 35.
    Liang J, Ma YY, Sims S, Wu LX (2015) A patterned porous polymer film for localized capture of insulin and glucose-responsive release. J Mater Chem B 3(7):1281–1288CrossRefGoogle Scholar
  36. 36.
    Kreuz JA (1995) Polyimidizations from acylated diamines and dianhydrides. Polymer 36(10):2089–2094CrossRefGoogle Scholar
  37. 37.
    Sasaki S, Matsuura T, Nishi S, Ando S (1991) Property control of new fluorinated copolyimides and their applications. Mat Res Soc Symp Proc 227:49–54CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinChina
  2. 2.School of Chemical Engineering and TechnologyNorth University of ChinaTaiyuanChina

Personalised recommendations