Advertisement

Journal of Materials Science

, Volume 54, Issue 7, pp 5551–5560 | Cite as

Multistate magnetoresistance in zigzag-edge trigonal graphene magnetic junctions

  • Guangmeng He
  • Shuai Qiu
  • Yangjun Cui
  • Cuiju Yu
  • Yuanyuan Miao
  • Guangping Zhang
  • Junfeng Ren
  • Chuan-Kui Wang
  • Guichao HuEmail author
Computation and theory
  • 33 Downloads

Abstract

Using density functional theory combined with nonequilibrium Green’s function method, spin-dependent transport through a zigzag-edge trigonal graphene molecule coupled with two ferromagnets was investigated. The results reveal that due to the intrinsic magnetism of the central graphene nanoflake, four spin configurations of the device can be achieved. By calculating the current–voltage characteristic, a three-state magnetoresistance effect is obtained companied with a large spin filtering efficiency. The intrinsic mechanism is explored as different shifts of the spin-split frontier molecular orbitals depending on the spin configurations of the device. This work indicates an intriguing prospect of graphene nanoflakes in designing novel spintronic devices, such as multistate magnetoresistance devices.

Notes

Acknowledgements

Support from the National Natural Science Foundation of China (Grant Nos. 11704230, 11674197), and the Taishan Scholar Project of Shandong Province are gratefully acknowledged.

References

  1. 1.
    Krishnan KM, Pakhomov AB, Bao Y, Blomqvist P, Chun Y, Gonzales M, Griffin K, Ji X, Roberts BK (2006) Nanomagnetism and spin electronics: materials, microstructure and novel properties. J Mater Sci 41(3):793–815.  https://doi.org/10.1007/s10853-006-6564-1 Google Scholar
  2. 2.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669Google Scholar
  3. 3.
    Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162Google Scholar
  4. 4.
    Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 438(7065):201–204Google Scholar
  5. 5.
    Deng XQ, Zhang ZH, Tang GP, Fan ZQ, Yang CH (2014) Spin filter effects in zigzag-edge graphene nanoribbons with symmetric and asymmetric edge hydrogenations. Carbon 66:646–653Google Scholar
  6. 6.
    Zeng J, Chen KQ, He J, Zhang XJ, Sun CQ (2011) Edge hydrogenation-induced spin-filtering and rectifying behaviors. J Phys Chem C 115(50):25072–25076Google Scholar
  7. 7.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191Google Scholar
  8. 8.
    Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444(7117):347–349Google Scholar
  9. 9.
    Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97(21):216803Google Scholar
  10. 10.
    Brey L, Fertig HA (2006) Electronic states of graphene nanoribbons studied with the Dirac equation. Phys Rev B 73(23):235411Google Scholar
  11. 11.
    Yao YX, Wang CZ, Zhang GP, Ji M, Ho KM (2009) A first-principles divide-and-conquer approach for electronic structure of large systems and its application to grapheme nanoribbons. J Phys Condens Matter 21(23):235501Google Scholar
  12. 12.
    Zhang GP, Fang XW, Yao YX, Wang CZ, Ding ZJ, Ho KM (2010) Electronic structure and transport of a carbon chain between graphene nanoribbon leads. J Phys Condens Matter 23(2):025302Google Scholar
  13. 13.
    Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, Affronte M (2011) Graphene spintronic devices with molecular nanomagnets. Nano Lett 11(7):2634–2639Google Scholar
  14. 14.
    Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75(12):125408Google Scholar
  15. 15.
    Kunstmann J, Özdoğan C, Quandt A, Fehske H (2011) Stability of edge states and edge magnetism in graphene nanoribbons. Phys Rev B 83(4):045414Google Scholar
  16. 16.
    Sawada K, Ishii F, Saito M (2010) Magnetism in graphene nanoribbons on Ni(111): first-principles density functional study. Phys Rev B 82(24):245426Google Scholar
  17. 17.
    Wang WL, Meng S, Kaxiras E (2008) Graphene nanoflakes with large spin. Nano Lett 8(1):241–245Google Scholar
  18. 18.
    Wang WL, Yazyev OV, Meng S, Kaxiras E (2009) Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. Phys Rev Lett 102(15):157201Google Scholar
  19. 19.
    Ezawa M (2008) Graphene nanoribbon and graphene nanodisk. Physica E 40(5):1421–1423Google Scholar
  20. 20.
    Ezawa M (2007) Metallic graphene nanodisks: electronic and magnetic properties. Phys Rev B 76(24):245415Google Scholar
  21. 21.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196Google Scholar
  22. 22.
    Räder HJ, Rouhanipour A, Talarico AM, Palermo V, Samorì P, Müllen K (2006) Processing of giant graphene molecules by soft-landing mass spectrometry. Nat Mater 5(4):276–280Google Scholar
  23. 23.
    Saffarzadeh A, Farghadan R (2011) A spin-filter device based on armchair graphene nanoribbons. Appl Phys Lett 98(2):023106Google Scholar
  24. 24.
    Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K (2001) The first detection of a Clar’s hydrocarbon, 2,6,10-tri-tert-butyltriangulene: a ground-state triplet of non-Kekulé polynuclear benzenoid hydrocarbon. J Am Chem Soc 123(50):12702–12703Google Scholar
  25. 25.
    Ci L, Xu Z, Wang L, Gao W, Feng D, Kelly KF, Yakobson BI, Ajayan PM (2008) Controlled nanocutting of graphene. Nano Res 1(2):116–122Google Scholar
  26. 26.
    Chuvilin A, Meyer JC, Algara-Siller G, Kaiser U (2009) From graphene constrictions to single carbon chains. N J Phys 11(8):083019Google Scholar
  27. 27.
    Silva AM, Pires MS, Freire VN, Albuquerque EL, Azevedo DL, Caetano EWS (2010) Graphene nanoflakes: thermal stability, infrared signatures, and potential applications in the field of spintronics and optical nanodevices. J Phys Chem C 114(41):17472–17485Google Scholar
  28. 28.
    Lieb EH (2002) Two theorems on the Hubbard model inequalities. Springer, Berlin, pp 91–94Google Scholar
  29. 29.
    Wagner P, Ivanovskaya VV, Melle-Franco M, Humbert B, Adjizian JJ, Briddon PR, Ewels CP (2013) Stable hydrogenated graphene edge types: normal and reconstructed Klein edges. Phys Rev B 88(9):094106Google Scholar
  30. 30.
    Şahin H, Senger RT, Ciraci S (2010) Spintronic properties of zigzag-edged triangular graphene flakes. J Appl Phys 108(7):074301Google Scholar
  31. 31.
    Zhang JJ, Zhang ZH, Tang GP (2014) Modulating magnetic ordering of the zigzag-edge trigonal graphene by functionalizations. Org Electron 15(7):1338–1346Google Scholar
  32. 32.
    Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18(21):3506–3514Google Scholar
  33. 33.
    Rezapour MR, Myung CW, Yun J, Ghassami A, Li N, Yu SU, Hajibabaei A, Park Y, Kim KS (2017) Graphene and graphene analogs toward optical, electronic, spintronic, green-chemical, energy-material, sensing, and medical applications. ACS Appl Mater Int 9(29):24393–24406Google Scholar
  34. 34.
    Zhang ZH, Zhang JJ, Kwong G, Li J, Fan ZQ, Deng XQ, Tang GP (2013) All-carbon spsp 2 hybrid structures: geometrical properties, current rectification, and current amplification. Sci Rep 3:2575Google Scholar
  35. 35.
    Deng X, Tang G, Guo C (2012) Tuning the electronic transport properties for a trigonal graphene flake. Phys Lett A 376(23):1839–1844Google Scholar
  36. 36.
    Liu W, Fang C, Zhao J, Cheng J, Liu D (2016) Electronic transport properties of trigonal graphene nanoribbon with different edge termination. MATEC Web Conf 67:02006Google Scholar
  37. 37.
    Ono T, Ota T, Egami Y (2011) Fully spin-dependent transport of triangular graphene flakes. Phys Rev B 84(22):224424Google Scholar
  38. 38.
    Sheng W, Ning ZY, Yang ZQ, Guo H (2010) Magnetism and perfect spin filtering effect in graphene nanoflakes. Nanotechnology 21(38):385201Google Scholar
  39. 39.
    Ezawa M (2009) Spin filter, spin amplifier and spin diode in graphene nanodisk. Eur Phys J B 67(4):543–549Google Scholar
  40. 40.
    Ovsiienko I, Matzui L, Berkutov I, Len T, Prylutskyy Y, Prokopov O, Ritter U (2018) Magnetoresistance of graphite intercalated with cobalt. J Mater Sci 53(1):716–726.  https://doi.org/10.1007/s10853-017-1511-x Google Scholar
  41. 41.
    Yu CJ, Miao YY, Qiu S, Cui YJ, He GM, Zhang GP, Wang CK, Hu GC (2018) Modulating spin-dependent electron transport in benzene-dithiolate magnetic junctions by hybrid interface states. J Phys D Appl Phys 51(34):345302Google Scholar
  42. 42.
    Liu R, Bi JJ, Xie Z, Yin K, Wang D, Zhang GP, Xiang D, Wang CK, Li ZL (2018) Fabricating atom-sized gaps by field-aided atom migration in nanoscale junctions. Phys Rev Appl 9(5):054023Google Scholar
  43. 43.
    Zeng J, Chen KQ (2014) Magnetic configuration dependence of magnetoresistance in a Fe-porphyrin-like carbon nanotube spintronic device. Appl Phys Lett 104(3):033104Google Scholar
  44. 44.
    Barzola-Quiquia J, Esquinazi P (2011) Spin transport in a thin graphite flake. J Mater Sci 46(13):4614–4617.  https://doi.org/10.1021/nl061702a?src=recsys Google Scholar
  45. 45.
    Liu F, Liu Y, Smith DL, Ruden PP (2015) Device model for graphene spin valves. IEEE Trans Electron Devices 62(10):3426–3432Google Scholar
  46. 46.
    Aragonès AC, Aravena D, Cerdá JI, Acís-Castillo Z, Li H, Real JA, Sanz F, Hihath J, Ruiz E, Díez-Pérez I (2015) Large conductance switching in a single-molecule device through room temperature spin-dependent transport. Nano Lett 16(1):218–226Google Scholar
  47. 47.
    Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16):165401Google Scholar
  48. 48.
    Atomistix ToolKit version 2018.06, Synopsys QuantumWise A/S. www.quantumwise.com
  49. 49.
    Troullier N, Martins JL (1990) A straightforward method for generating soft transferable pseudopotentials. Solid State Commun 74(7):613–616Google Scholar
  50. 50.
    Datta S (1995) Electron transport in mesoscopic systems. Cambridge University Press, CambridgeGoogle Scholar
  51. 51.
    Yazyev OV (2010) Emergence of magnetism in graphene materials and nanostructures. Rep Prog Phys 73(5):056501Google Scholar
  52. 52.
    Xiong ZH, Wu D, Vardeny ZV, Shi J (2004) Giant magnetoresistance in organic spin-valves. Nature 427(6977):821–824Google Scholar
  53. 53.
    Kim WY, Kim KS (2008) Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat Nanotechnol 3(7):408Google Scholar
  54. 54.
    Rezapour MR, Yun J, Lee G, Kim KS (2016) Lower electric field-driven magnetic phase transition and perfect spin filtering in graphene nanoribbons by edge functionalization. J Phys Chem Lett 7(24):5049–5055Google Scholar
  55. 55.
    Zhang YT, Jiang H, Sun Q, Xie XC (2010) Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene nanoribbons. Phys Rev B 81(16):165404Google Scholar
  56. 56.
    Larade B, Taylor J, Zheng QR, Mehrez H, Pomorski P, Guo H (2001) Renormalized molecular levels in a Sc3N@C80 molecular electronic device. Phys Rev B 64(19):195402Google Scholar
  57. 57.
    Hu GC, Zuo MY, Li Y, Ren JF, Xie SJ (2014) Multi-state magnetoresistance in ferromagnet/organic-ferromagnet/ferromagnet junctions. Appl Phys Lett 104(3):033302Google Scholar
  58. 58.
    Botton GA, Guo GY, Temmerman WM, Humphreys CJ (1996) Experimental and theoretical study of the electronic structure of Fe Co, and Ni aluminides with the B2 structure. Phys Rev B 54(3):1682Google Scholar
  59. 59.
    Papaconstantopoulos DA (2015) Handbook of the band structure of elemental solids. Springer, BostonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guangmeng He
    • 1
  • Shuai Qiu
    • 1
  • Yangjun Cui
    • 1
  • Cuiju Yu
    • 1
  • Yuanyuan Miao
    • 1
  • Guangping Zhang
    • 1
  • Junfeng Ren
    • 1
  • Chuan-Kui Wang
    • 1
  • Guichao Hu
    • 1
    Email author
  1. 1.Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and ElectronicsShandong Normal UniversityJinanChina

Personalised recommendations