Advertisement

Journal of Materials Science

, Volume 54, Issue 7, pp 5536–5550 | Cite as

Quantifying the role of interface atomic structure in the compressive response of Ti2AlN/TiAl composite using MD simulations

  • Xiuli Han
  • Pei LiuEmail author
  • Dongli SunEmail author
  • Qing Wang
Computation and theory
  • 66 Downloads

Abstract

Unraveling the effects of interface atomic structures on the mechanical properties is a key step toward the elaborate design of Ti2AlN/TiAl composite with excellent performance. However, the impact of different interface atomic structures upon the mechanical properties of Ti2AlN/TiAl composite, which is extremely important from the perspective of material design, remains poorly understood and essentially unquantified so far. In this research work, molecular dynamics simulations of Ti2AlN(0001)/TiAl(111) coherent interface and \( {\text{Ti}}_{2} {\text{AlN}}(10{\bar{\text{1}}}3)/{\text{TiAl}}\left( {111} \right) \) incoherent interface system under parallel-to-interface compression are carried out. It is found that these two types of interface systems show different compressive deformation behaviors due to significantly different interface–dislocation interactive mechanisms. The compressive ultimate strengths of Ti2AlN(0001)/TiAl(111) coherent interface and \( {\text{Ti}}_{2} {\text{AlN}}(10{\bar{\text{1}}}3)/{\text{TiAl}}\left( {111} \right) \) incoherent interface systems are comparable, but the ductility of incoherent interface system is obviously higher than that of coherent interface system. This is because the incoherent interface can simultaneously serve as the source for dislocation nucleation and the barrier for dislocation motion, and thus plays a dual role of softening and hardening in the compressive deformation. Therefore, it can be expected that tuning the interface with \( {\text{Ti}}_{2} {\text{AlN}}(10{\bar{\text{1}}}3)/{\text{TiAl}}\left( {111} \right) \) incoherent atomic structure can contribute to increasing the compressive ductility of Ti2AlN/TiAl composite without lowering its strength.

Notes

Acknowledgements

The authors acknowledge the financial support from National Natural Science Foundation of China (Grant Nos. 51471058, 51201046).

Supplementary material

10853_2018_3237_MOESM1_ESM.docx (56 kb)
Supplementary material 1 (DOCX 56 kb)

References

  1. 1.
    Appel F, Clemens H, Fischer FD (2016) Modeling concepts for intermetallic titanium aluminides. Prog Mater Sci 81:55–124CrossRefGoogle Scholar
  2. 2.
    Chen G, Peng YB, Zheng G, Qi ZX, Wang MZ, Yu HC, Dong CL, Liu CT (2016) Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat Mater 15:876–882CrossRefGoogle Scholar
  3. 3.
    Kothari K, Radhakrishnan R, Wereley NM (2012) Advances in gamma titanium aluminides and their manufacturing techniques. Prog Aerosp Sci 55:1–16CrossRefGoogle Scholar
  4. 4.
    Song L, Lin JP, Li JS (2017) Effects of trace alloying elements on the phase transformation behaviors of ordered ω phases in high Nb–TiAl alloys. Mater Des 113:47–53CrossRefGoogle Scholar
  5. 5.
    Li W, Yang Y, Liu J, Zhou Y, Li M, Wen SF, Wei QS, Yan CZ, Shi YS (2017) Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in situ metal matrix composites prepared via selective laser melting. Acta Mater 136:90–104CrossRefGoogle Scholar
  6. 6.
    Lapin J, Klimová A, Gabalcová Z, Pelachová T, Bajana O, Štamborská M (2017) Microstructure and mechanical properties of cast in situ TiAl matrix composites reinforced with (Ti, Nb)2AlC particles. Mater Des 133:404–415CrossRefGoogle Scholar
  7. 7.
    Lu ZL, Cao JW, Bai SZ, Wang MY, Li DC (2015) Microstructure and mechanical properties of TiAl-based composites prepared by Stereolithography and gelcasting technologies. J Alloys Compd 633:280–287CrossRefGoogle Scholar
  8. 8.
    Lapin J, Kamyshnykova K (2018) Processing, microstructure and mechanical properties of in situ Ti3Al + TiAl matrix composite reinforced with Ti2AlC particles prepared by centrifugal casting. Intermetallics 98:34–44CrossRefGoogle Scholar
  9. 9.
    Liu P, Han XL, Sun DL, Wang Q (2018) First-principles investigation on the structures, energies, electronic and defective properties of Ti2AlN surfaces. Appl Surf Sci 433:1056–1066CrossRefGoogle Scholar
  10. 10.
    Duong TC, Singh N, Arróyave R (2013) First-principles calculations of finite-temperature elastic properties of Ti2AlX (X = C or N). Comput Mater Sci 79:296–302CrossRefGoogle Scholar
  11. 11.
    Sun DL, Sun T, Wang Q, Han XL, Guo Q, Wu GH (2014) Fabrication of in situ Ti2AlN/TiAl composites by reaction hot pressing and their properties. J Wuhan Univ Technol-Mater Sci Ed 29:126–130CrossRefGoogle Scholar
  12. 12.
    Sun T, Wang Q, Sun DL, Wu GH, Na Y (2010) Study on dry sliding friction and wear properties of Ti2AlN/TiAl composite. Wear 268:693–699CrossRefGoogle Scholar
  13. 13.
    Liu YW, Hu R, Zhang TB, Kou HC, Li JS (2014) Microstructure characterization and mechanical properties of in situ synthesized Ti2AlN/Ti48Al2Cr2Nb composites. Adv Eng Mater 16:507–510CrossRefGoogle Scholar
  14. 14.
    Liu YW, Hu R, Yang JR, Li JS (2017) Tensile properties and fracture behavior of in situ synthesized Ti2AlN/Ti48Al2Cr2Nb composites at room and elevated temperatures. Mater Sci Eng A 679:7–13CrossRefGoogle Scholar
  15. 15.
    Beyerlein IJ, Demkowicz MJ, Misra A, Uberuaga BP (2015) Defect-interface interactions. Prog Mater Sci 74:125–210CrossRefGoogle Scholar
  16. 16.
    Liu N, Liu XY (2018) Review: mechanical behavior of metal/ceramic interfaces in nanolayered composites—experiments and modeling. J Mater Sci 53:5562–5583.  https://doi.org/10.1007/s10853-017-1767-1 CrossRefGoogle Scholar
  17. 17.
    Wang J, Misra A (2011) An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid State Mater Sci 15:20–28CrossRefGoogle Scholar
  18. 18.
    Zhang XM, Zhang B, Mu Y, Shao S, Wick CD, Ramachandran BR, Meng WJ (2017) Mechanical failure of metal/ceramic interfacial regions under shear loading. Acta Mater 138:224–236CrossRefGoogle Scholar
  19. 19.
    Lu K, Lu L, Suresh S (2009) Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324:349–352CrossRefGoogle Scholar
  20. 20.
    Li N, Wang H, Misra A, Wang J (2014) In situ nanoindentation study of plastic co-deformation in Al–TiN nanocomposites. Sci Rep 4:6633CrossRefGoogle Scholar
  21. 21.
    Liu P, Sun DL, Han XL, Wang Q (2017) Investigation on the crystallographic orientation relationships and interface atomic structures in an in situ Ti2AlN/TiAl composite. Mater Des 130:239–249CrossRefGoogle Scholar
  22. 22.
    Medyanik SN, Shao S (2009) Strengthening effects of coherent interfaces in nanoscale metallic bilayers. Comput Mater Sci 45:1129–1133CrossRefGoogle Scholar
  23. 23.
    Salehinia I, Wang J, Bahr DF, Zbib HM (2014) Molecular dynamics simulations of plastic deformation in Nb/NbC multilayers. Int J Plast 59:119–132CrossRefGoogle Scholar
  24. 24.
    Zhang RF, Wang J, Beyerlein IJ, Misra A, Germann TC (2012) Atomic-scale study of nucleation of dislocation from fcc-bcc interfaces. Acta Mater 60:2855–2865CrossRefGoogle Scholar
  25. 25.
    Liu P, Han XL, Sun DL, Chen ZH, Wang Q (2018) Adhesion, stability and electronic properties of Ti2AlN(0001)/TiAl(111) coherent interface from first-principles calculation. Intermetallics 96:49–57CrossRefGoogle Scholar
  26. 26.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  27. 27.
    Liu P, Han XL, Sun DL, Wang Q (2018) Development and application of a ternary Ti-Al-N interatomic potential for Ti2AlN/TiAl composite. J Alloys Compd 745:63–74CrossRefGoogle Scholar
  28. 28.
    Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Modell Simul Mater Sci Eng 20:045021CrossRefGoogle Scholar
  29. 29.
    Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Modell Simul Mater Sci Eng 20:085007CrossRefGoogle Scholar
  30. 30.
    Chen XY, Kong XF, Misra A, Legut D, Yao BN, Germann TC, Zhang RF (2018) Effect of dynamic evolution of misfit dislocation pattern on dislocation nucleation and shear sliding at semi-coherent bimetal interfaces. Acta Mater 143:107–120CrossRefGoogle Scholar
  31. 31.
    Béjaud R, Durinck J, Brochard S (2018) Twin-interface interactions in nanostructured Cu/Ag: molecular dynamics study. Acta Mater 144:314–324CrossRefGoogle Scholar
  32. 32.
    Kabiri Y, Schrenker N, Müller J, Mačković M, Spiecker E (2017) Direct observation of dislocation formation and plastic anisotropy in Nb2AlC MAX phase using in situ nanomechanics in transmission electron microscopy. Scr Mater 137:104–108CrossRefGoogle Scholar
  33. 33.
    Barsoum MW, Zhen T, Kalidindi SR, Radovic M, Murugaiah A (2003) Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat Mater 2:107–111CrossRefGoogle Scholar
  34. 34.
    Gruber J, Lang AC, Griggs J, Taheri ML, Tucker GJ, Barsoum MW (2016) Evidence for bulk ripplocations in layered solids. Sci Rep 6:33451CrossRefGoogle Scholar
  35. 35.
    Barsoum MW, Tucker GJ (2017) Deformation of layered solids: ripplocations not basal dislocations. Scr Mater 139:166–172CrossRefGoogle Scholar
  36. 36.
    Griggs J, Lang AC, Gruber J, Tucker GJ, Taheri ML, Barsoum MW (2017) Spherical nanoindentation, modeling and transmission electron microscopy evidence for ripplocations in Ti3SiC2. Acta Mater 131:141–155CrossRefGoogle Scholar
  37. 37.
    Shao S, Medyanik SN (2010) Interaction of dislocations with incoherent interfaces in nanoscale FCC-BCC metallic bi-layers. Modell Simul Mater Sci Eng 18:055010CrossRefGoogle Scholar
  38. 38.
    Wang J, Hoagland RG, Hirth JP, Mira A (2008) Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater 56:5685–5693CrossRefGoogle Scholar
  39. 39.
    Zbib HM, Overman CT, Akasheh F, Bahr D (2011) Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int J Plast 27:1618–1639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations