Journal of Materials Science

, Volume 54, Issue 8, pp 6301–6309 | Cite as

Sensitive label-free sensor with high figure of merit based on plasmonic metasurface with unit cell of double two-split nanorings

  • Naseer Muhammad
  • Zhengbiao OuyangEmail author
  • Qiang Liu
  • Xiaopin Tang
  • Zi-Lan Deng
  • Adnan Daud Khan
Computation and theory


We theoretically propose a sensitive label-free sensor with high figure of merit (FoM) based on Fano resonances on a plasmonic metasurface whose unit cell consists of double two-split nanorings by finite-element method. The unit cell of the proposed Fano resonant structure comprises of two thin gold nanorings each with two splits. Two Fano modes are generated in near-infrared regime through symmetry breaking by rotating the splits in nanorings in opposite directions. The fundamental feature of the proposed sensor is its relatively simple structure, double-mode usable, a large single-side quality factor of 566, and high FoM value of 378. According to our knowledge, these values are higher than those previously reported. The sensor has high substance resolving capability that its minimum detectable refractive index change can be as small as 0.00236, making it possible to distinguish different bio-tissues.



This work is supported by the NSFC (Grant Nos.: 61275043, 60877034, 61605128, and 61307048), GDNSF (Grant No.: 2017A030310455), and SZSF (Grant Nos.: JCYJ20170302151033006, 20180123).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Meinzer N, Barnes WL, Hooper IR (2014) Plasmonic meta-atoms and metasurfaces. Nat Photon 8:889–898CrossRefGoogle Scholar
  2. 2.
    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S (2015) Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10:308CrossRefGoogle Scholar
  3. 3.
    La Spada L, Vegni L (2017) Near-zero-index wires. Opt Express 25:23699–23708CrossRefGoogle Scholar
  4. 4.
    Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401CrossRefGoogle Scholar
  5. 5.
    Muhammad N, Khan AD, Deng Z-L, Khan K, Yadav A, Liu Q, Ouyang Z (2017) Plasmonic spectral splitting in ring/rod metasurface. Nanomaterials 7:397CrossRefGoogle Scholar
  6. 6.
    Smith DR, Pendry JB, Wiltshire MC (2004) Metamaterials and negative refractive index. Science 305:788–792CrossRefGoogle Scholar
  7. 7.
    Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715CrossRefGoogle Scholar
  8. 8.
    Muhammad N, Khan AD (2017) Electromagnetically induced transparency and sharp asymmetric Fano line shapes in all-dielectric nanodimer. Plasmonics 12:1399–1407CrossRefGoogle Scholar
  9. 9.
    Lovera A, Gallinet B, Nordlander P, Martin OJ (2013) Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7:4527–4536CrossRefGoogle Scholar
  10. 10.
    Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J et al (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381CrossRefGoogle Scholar
  11. 11.
    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H (2009) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107CrossRefGoogle Scholar
  12. 12.
    Vollmer F, Yang L (2012) Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 1:267–291CrossRefGoogle Scholar
  13. 13.
    Giannios P, Koutsoumpos S, Toutouzas KG, Matiatou M, Zografos GC, Moutzouris K (2017) Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared. J Biophoton 10:303–310CrossRefGoogle Scholar
  14. 14.
    Choi WJ, Jeon DI, Ahn S-G, Yoon J-H, Kim S, Lee BH (2010) Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution. Opt Express 18:23285–23295CrossRefGoogle Scholar
  15. 15.
    Tang Y, Zhang Z, Wang R, Hai Z, Xue C, Zhang W, Yan S (2017) Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17:784CrossRefGoogle Scholar
  16. 16.
    Lee K-L, Hsu H-Y, You M-L, Chang C-C, Pan M-Y, Shi X, Ueno K, Misawa H et al (2017) Highly sensitive aluminum-based biosensors using tailorable Fano resonances in capped nanostructures. Sci Rep 7:44104CrossRefGoogle Scholar
  17. 17.
    Yang Y, Kravchenko II, Briggs DP, Valentine J (2014) All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun 5:5753CrossRefGoogle Scholar
  18. 18.
    Li Z, Sun R, Zhang C, Wan M, Gu P, Shen Q, Chen Z, Wang Z (2016) Boosting figures of merit of cavity plasmon resonance based refractive index sensing in dielectric-metal core-shell resonators. Opt Express 24:19895–19904CrossRefGoogle Scholar
  19. 19.
    Farmani A, Mir A, Bazgir M, Zarrabi FB (2018) Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study. Phys E 104:233–240CrossRefGoogle Scholar
  20. 20.
    Alipour A, Farmani A, Mir A (2018) High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens J 18:7047–7054CrossRefGoogle Scholar
  21. 21.
    Rifat A, Rahmani M, Xu L, Miroshnichenko A (2018) Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor. Materials 11:1091CrossRefGoogle Scholar
  22. 22.
    Lee K-L, Huang J-B, Chang J-W, Wu S-H, Wei P-K (2015) Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays. Sci Rep 5:8547CrossRefGoogle Scholar
  23. 23.
    Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6:827–832CrossRefGoogle Scholar
  24. 24.
    Dayal G, Chin XY, Soci C, Singh R (2016) Independent tailoring of super-radiant and sub-radiant modes in high-q plasmonic Fano resonant metasurfaces. Adv Opt Mater 4:1860–1866CrossRefGoogle Scholar
  25. 25.
    Bukasov R, Shumaker-Parry JS (2007) Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett 7:1113–1118CrossRefGoogle Scholar
  26. 26.
    Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038CrossRefGoogle Scholar
  27. 27.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sens Actuat B Chem 54:3–15CrossRefGoogle Scholar
  28. 28.
    Fu YH, Zhang JB, Yu YF, Luk’yanchuk B (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6:5130–5137CrossRefGoogle Scholar
  29. 29.
    Liu T, Li J, Gao F, Han Q, Liu S (2013) Generation and manipulation of higher order Fano resonances in plasmonic nanodisks with a built-in missing sectorial slice. EPL 104:47009CrossRefGoogle Scholar
  30. 30.
    Wu Y, Zheng H, Li J, Wang C, Li C, Dong J (2015) Generation and manipulation of ultrahigh order plasmon resonances in visible and near-infrared region. Opt Express 23:10836–10846CrossRefGoogle Scholar
  31. 31.
    Habteyes TG, Dhuey S, Cabrini S, Schuck PJ, Leone SR (2011) Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling. Nano Lett 11:1819–1825CrossRefGoogle Scholar
  32. 32.
    Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GA, Lagae L, Moshchalkov VV (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11:391–397CrossRefGoogle Scholar
  33. 33.
    Khan A, Amin M (2017) Polarization Selective multiple Fano resonances in coupled t-shaped metasurface. IEEE Photon Technol Lett 29:1611–1614CrossRefGoogle Scholar
  34. 34.
    Amin M, Khan AD (2015) Polarization selective electromagnetic-induced transparency in the disordered plasmonic quasicrystal structure. J Phys Chem C 119:21633–21638CrossRefGoogle Scholar
  35. 35.
    Muhammad N, Khan AD (2015) Tunable Fano resonances and electromagnetically induced transparency in all-dielectric holey block. Plasmonics 10:1687–1693CrossRefGoogle Scholar
  36. 36.
    Muhammad N, Fu T, Liu Q, Tang X, Deng Z-L, Ouyang Z (2018) Plasmonic metasurface absorber based on electro-optic substrate for energy harvesting. Materials 11:2315CrossRefGoogle Scholar
  37. 37.
    Miroshnichenko AE, Kivshar YS (2012) Fano resonances in all-dielectric oligomers. Nano Lett 12:6459–6463CrossRefGoogle Scholar
  38. 38.
    Brown LV, Zhao K, King N, Sobhani H, Nordlander P, Halas NJ (2013) Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. J Am Chem Soc 135:3688–3695CrossRefGoogle Scholar
  39. 39.
    Aouani H, Rahmani M, Sipova H, Torres V, Ki Hegnerová, Beruete M, Homola J, Hong M et al (2013) Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies. J Phys Chem C 117:18620–18626CrossRefGoogle Scholar
  40. 40.
    Huck C, Neubrech F, Vogt J, Toma A, Gerbert D, Katzmann J, Härtling T, Pucci A (2014) Surface-enhanced infrared spectroscopy using nanometer-sized gaps. ACS Nano 8:4908–4914CrossRefGoogle Scholar
  41. 41.
    Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  42. 42.
    Krasnok A, Caldarola M, Bonod N, Alú A (2018) Spectroscopy and biosensing with optically resonant dielectric nanostructures. Adv Opt Mater 6:1701094CrossRefGoogle Scholar
  43. 43.
    Zhao X, Wong MM-K, Chiu S-K, Pang SW (2015) Effects of three-layered nanodisk size on cell detection sensitivity of plasmon resonance biosensors. Biosens Bioelectron 74:799–807CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shenzhen Key Laboratory of Micro-Nano Photonic Information TechnologyTHz Technical Research Center of Shenzhen UniversityShenzhenChina
  2. 2.Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong ProvinceShenzhenChina
  3. 3.College of Electronic Science and TechnologyShenzhen UniversityShenzhenChina
  4. 4.US – Pakistan Center for Advanced Studies in EnergyUniversity of Engineering and TechnologyPeshawarPakistan
  5. 5.Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsGuangzhouChina
  6. 6.Institute of Photonics TechnologyJinan UniversityGuangzhouChina

Personalised recommendations