Advertisement

Journal of Materials Science

, Volume 54, Issue 7, pp 5331–5342 | Cite as

Effect of phase transition stress on the photoluminescence of perovskite CH3NH3PbI3 microwires

  • Rubén Segovia
  • Leyan Ding
  • Hu Jiang
  • Peng Miao
  • Xiudong Sun
  • Hongyan Shi
  • Bo GaoEmail author
Chemical routes to materials
  • 132 Downloads

Abstract

CH3NH3PbI3 (MAPbI3) exhibits distinctive properties for applications in photovoltaics, light emitting devices, photodetectors, and fuel cells. The working temperature of an optoelectronic device affects the photophysical properties of the active material, which is closely related to the device performance. In MAPbI3, these properties are intimately connected with its crystalline structure which is temperature dependent. Here, we study the photoluminescence (PL) behavior of MAPbI3 microwires (MWs) under recursive tetragonal-to-cubic and cubic-to-tetragonal phase transitions induced by temperature cycles from 40 °C (tetragonal phase) to 80 °C (cubic phase). MWs emission exhibited an initial redshift in wavelength by increasing the temperature from the tetragonal to the cubic phase, but after several thermal cycles, this trend reversed and the emission blueshifted. In both phases independently, the emission blueshifted and became stronger with increasing the cycles. The results indicate a thermal cycling-dependent PL and a gradual crystalline structure deformation due to a reiterated change in the MWs lattice, which implies variation in the electronic bandgap along the heating–cooling process. The alteration of the electronic band structure was corroborated by thermal cycling-reflectance measurements. The awareness behavior of material properties upon phase transitions and temperature fluctuations is of great importance for the optimization of optoelectronic devices.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21473046, 21203046 and 11374074) and the New Faculty Start-up Funds from Harbin Institute of Technology.

Author contributions

BG and RS conceived idea. RS, LD, HJ, and PM carried out the experiments. RS and BG wrote the manuscript. XS, HS, and BG supervised the project. All authors contributed to data analysis and scientific discussion.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_3221_MOESM1_ESM.docx (5.4 mb)
XRD profile and PL spectrum at ambient conditions of the as-prepared MAPbI3 microwires. PL Gaussian fitting curves and table with the corresponding spectra fitted values for each of the thermal cycles. Optical images of the microwires before and after the temperature cycling (DOCX 5486 kb)

References

  1. 1.
    Brivio F, Walker AB, Walsh A (2013) Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater 1:042111CrossRefGoogle Scholar
  2. 2.
    De Wolf S, Holovsky J, Moon SJ, Loper P, Niesen B, Ledinsky M, Haug FJ, Yum JH et al (2014) Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 5:1035–1039CrossRefGoogle Scholar
  3. 3.
    Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A et al (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344CrossRefGoogle Scholar
  4. 4.
    Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630CrossRefGoogle Scholar
  5. 5.
    Kazim S, Nazeeruddin MK, Grätzel M, Ahmad S (2014) Perovskite as light harvester: a game changer in photovoltaics. Angew Chem Int Ed 53:2812–2824CrossRefGoogle Scholar
  6. 6.
    Baikie T, Fang YN, Kadro JM, Schreyer M, Wei FX, Mhaisalkar SG, Graetzel M, White TJ (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1:5628–5641CrossRefGoogle Scholar
  7. 7.
    Colella S, Mazzeo M, Rizzo A, Gigli G, Listorti A (2016) The bright side of perovskites. J Phys Chem Lett 7:4322–4334CrossRefGoogle Scholar
  8. 8.
    Zhu C, Tang Y, Chen F, Manohari AG, Zhu Y, Shi ZL, Xu CX (2016) Fabrication of self-assembly polycrystalline perovskite microwires and photodetectors. J Cryst Growth 454:121–127CrossRefGoogle Scholar
  9. 9.
    Ding J, Du S, Zhao Y, Zhang X, Zuo Z, Cui H, Zhan X, Gu Y et al (2016) High-quality inorganic–organic perovskite CH3NH3PbI3 single crystals for photo-detector applications. J Mater Sci 52:276–284.  https://doi.org/10.1007/s10853-016-0329-2 CrossRefGoogle Scholar
  10. 10.
    Wang Z, Liu J, Xu ZQ, Xue Y, Jiang L, Song J, Huang F, Wang Y et al (2016) Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires. Nanoscale 8:6258–6264CrossRefGoogle Scholar
  11. 11.
    Chen YS, Manser JS, Kamat PV (2015) All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. J Am Chem Soc 137:974–981CrossRefGoogle Scholar
  12. 12.
    Skoplaki E, Palyvos JA (2009) On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol Energy 83:614–624CrossRefGoogle Scholar
  13. 13.
    International Electrotechnical Commission, IEC 61215 (2016) Terrestrial photovoltaic (PV) modules-design qualification and type approval, 1st edn. https://webstore.iec.ch/publication/24312
  14. 14.
    Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52:9019–9038CrossRefGoogle Scholar
  15. 15.
    Poglitsch A, Weber D (1987) Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys 87:6373–6378CrossRefGoogle Scholar
  16. 16.
    Kawamura Y, Mashiyama H, Hasebe K (2002) Structural study on cubic-tetragonal transition of CH3NH3PbI3. J Phys Soc Jpn 71:1694–1697CrossRefGoogle Scholar
  17. 17.
    Weller MT, Weber OJ, Henry PF, Di Pumpo AM, Hansen TC (2015) Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 k. Chem Commun 51:4180–4183CrossRefGoogle Scholar
  18. 18.
    Panzer F, Li C, Meier T, Köhler A, Huettner S (2017) Impact of structural dynamics on the optical properties of methylammonium lead iodide perovskites. Adv Energy Mater 7:1700286CrossRefGoogle Scholar
  19. 19.
    Mannino G, Alberti A, Deretzis I, Smecca E, Sanzaro S, Numata Y, Miyasaka T, La Magna A (2017) First evidence of CH3NH3PbI3 optical constants improvement in a N2 environment in the range 40–80 °C. J Phys Chem C 121:7703–7710CrossRefGoogle Scholar
  20. 20.
    Milot RL, Eperon GE, Snaith HJ, Johnston MB, Herz LM (2015) Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv Funct Mater 25:6218–6227CrossRefGoogle Scholar
  21. 21.
    Kao TS, Chou YH, Chou CH, Chen FC, Lu TC (2014) Lasing behaviors upon phase transition in solution-processed perovskite thin films. Appl Phys Lett 105:231108CrossRefGoogle Scholar
  22. 22.
    Kong W, Ye Z, Qi Z, Zhang B, Wang M, Rahimi-Iman A, Wu H (2015) Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3. Phys Chem Chem Phys 17:16405–16411CrossRefGoogle Scholar
  23. 23.
    Singh S, Li C, Panzer F, Narasimhan KL, Graeser A, Gujar TP, Kohler A, Thelakkat M et al (2016) Effect of thermal and structural disorder on the electronic structure of hybrid perovskite semiconductor CH3NH3PbI3. J Phys Chem Lett 7:3014–3021CrossRefGoogle Scholar
  24. 24.
    Foley BJ, Marlowe DL, Sun K, Saidi WA, Scudiero L, Gupta MC, Choi JJ (2015) Temperature dependent energy levels of methylammonium lead iodide perovskite. Appl Phys Lett 106:243904CrossRefGoogle Scholar
  25. 25.
    Barugkin C, Cong J, Duong T, Rahman S, Nguyen HT, Macdonald D, White TP, Catchpole KR (2015) Ultralow absorption coefficient and temperature dependence of radiative recombination of CH3NH3PbI3 perovskite from photoluminescence. J Phys Chem Lett 6:767–772CrossRefGoogle Scholar
  26. 26.
    Wright AD, Verdi C, Milot RL, Eperon GE, Perez-Osorio MA, Snaith HJ, Giustino F, Johnston MB et al (2016) Electron-phonon coupling in hybrid lead halide perovskites. Nat Commun 7:11755CrossRefGoogle Scholar
  27. 27.
    Dar MI, Jacopin G, Meloni S, Mattoni A, Arora N, Boziki A, Zakeeruddin SM, Rothlisberger U et al (2016) Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Sci Adv 2:e1601156CrossRefGoogle Scholar
  28. 28.
    Luo L, Men L, Liu Z, Mudryk Y, Zhao X, Yao Y, Park JM, Shinar R et al (2017) Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite. Nat Commun 8:15565CrossRefGoogle Scholar
  29. 29.
    Wu X, Trinh MT, Niesner D, Zhu H, Norman Z, Owen JS, Yaffe O, Kudisch BJ et al (2015) Trap states in lead iodide perovskites. J Am Chem Soc 137:2089–2096CrossRefGoogle Scholar
  30. 30.
    Fang H-H, Raissa R, Abdu-Aguye M, Adjokatse S, Blake GR, Even J, Loi MA (2015) Photophysics of organic-inorganic hybrid lead iodide perovskite single crystals. Adv Funct Mater 25:2378–2385CrossRefGoogle Scholar
  31. 31.
    Diab H, Trippe-Allard G, Ledee F, Jemli K, Vilar C, Bouchez G, Jacques VL, Tejeda A et al (2016) Narrow linewidth excitonic emission in organic-inorganic lead iodide perovskite single crystals. J Phys Chem Lett 7:5093–5100CrossRefGoogle Scholar
  32. 32.
    Zhou J, Lei N, Zhou H, Zhang Y, Tang Z, Jiang L (2018) Understanding the temperature-dependent charge transport, structural variation and photoluminescent properties in methylammonium lead halide perovskite single crystals. J Mat Chem C 6:6556–6564CrossRefGoogle Scholar
  33. 33.
    Ha S-T, Shen C, Zhang J, Xiong Q (2015) Laser cooling of organic-inorganic lead halide perovskites. Nat Photonics 10:115–121CrossRefGoogle Scholar
  34. 34.
    Liao Q, Hu K, Zhang H, Wang X, Yao J, Fu H (2015) Perovskite microdisk microlasers self-assembled from solution. Adv Mater 27:3405–3410CrossRefGoogle Scholar
  35. 35.
    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y (2014) Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes. Appl Phys Express 7:032302CrossRefGoogle Scholar
  36. 36.
    Zhu F, Men L, Guo Y, Zhu Q, Bhattacharjee U, Goodwin PM, Petrich JW, Smith EA et al (2015) Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals. ACS Nano 9:2948–2959CrossRefGoogle Scholar
  37. 37.
    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N (2003) Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun 127:619–623CrossRefGoogle Scholar
  38. 38.
    Bohn BJ, Simon T, Gramlich M, Richter AF, Polavarapu L, Urban AS, Feldmann J (2017) Dephasing and quantum beating of excitons in methylammonium lead iodide perovskite nanoplatelets. ACS Photonics 5:648–654CrossRefGoogle Scholar
  39. 39.
    Tian Y, Peter M, Unger E, Abdellah M, Zheng K, Pullerits T, Yartsev A, Sundstrom V et al (2015) Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold. Phys Chem Chem Phys 17:24978–24987CrossRefGoogle Scholar
  40. 40.
    Wu XY, Wang J, Yeow EKL (2016) Ultralong perovskite microrods: one- versus two-step synthesis and enhancement of hole-transfer during light soaking. J Phys Chem C 120:12273–12283CrossRefGoogle Scholar
  41. 41.
    Yangui A, Pillet S, Lusson A, Bendeif E-E, Triki S, Abid Y, Boukheddaden K (2017) Control of the white-light emission in the mixed two-dimensional hybrid perovskites (C6H11NH3)2[PbBr4-xIx]. J Alloy Compd 699:1122–1133CrossRefGoogle Scholar
  42. 42.
    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J (2014) Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun 5:5784CrossRefGoogle Scholar
  43. 43.
    deQuilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE, Ziffer ME, Snaith HJ, Ginger DS (2015) Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348:683–686CrossRefGoogle Scholar
  44. 44.
    Ren Z, Ng A, Shen Q, Gokkaya HC, Wang J, Yang L, Yiu WK, Bai G et al (2014) Thermal assisted oxygen annealing for high efficiency planar CH3NH3PbI3 perovskite solar cells. Sci Rep 4:6752CrossRefGoogle Scholar
  45. 45.
    Segovia R, Qu G, Peng M, Sun X, Shi H, Gao B (2018) Evolution of photoluminescence, raman, and structure of CH3NH3PbI3 perovskite microwires under humidity exposure. Nanoscale Res Lett 13:79CrossRefGoogle Scholar
  46. 46.
    Zhong M, Zhang S, Huang L, You J, Wei Z, Liu X, Li J (2017) Large-scale 2D PbI2 monolayers: experimental realization and their indirect band-gap related properties. Nanoscale 9:3736–3741CrossRefGoogle Scholar
  47. 47.
    Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14:2584–2590CrossRefGoogle Scholar
  48. 48.
    Brivio F, Butler KT, Walsh A, van Schilfgaarde M (2014) Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys Rev B 89:155204CrossRefGoogle Scholar
  49. 49.
    Yuan Y, Huang J (2016) Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc Chem Res 49:286–293CrossRefGoogle Scholar
  50. 50.
    Walsh A, Stranks SD (2018) Taking control of ion transport in halide perovskite solar cells. ACS Energy Lett 3:1983–1990CrossRefGoogle Scholar
  51. 51.
    Delugas P, Caddeo C, Filippetti A, Mattoni A (2016) Thermally activated point defect diffusion in methylammonium lead trihalide: anisotropic and ultrahigh mobility of iodine. J Phys Chem Lett 7:2356–2361CrossRefGoogle Scholar
  52. 52.
    Stranks SD (2017) Nonradiative losses in metal halide perovskites. ACS Energy Lett 2:1515–1525CrossRefGoogle Scholar
  53. 53.
    deQuilettes DW, Zhang W, Burlakov VM, Graham DJ, Leijtens T, Osherov A, Bulovic V, Snaith HJ et al (2016) Photo-induced halide redistribution in organic-inorganic perovskite films. Nat Commun 7:11683CrossRefGoogle Scholar
  54. 54.
    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, De Angelis F (2014) Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J Phys Chem Lett 5:2662–2669CrossRefGoogle Scholar
  55. 55.
    Zhang Y, Wang Y, Xu ZQ, Liu J, Song J, Xue Y, Wang Z, Zheng J et al (2016) Reversible structural swell-shrink and recoverable optical properties in hybrid inorganic-organic perovskite. ACS Nano 10:7031–7038CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Modern Optics, Department of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang ProvinceHarbin Institute of TechnologyHarbinChina
  2. 2.School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
  3. 3.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanChina

Personalised recommendations