Journal of Materials Science

, Volume 54, Issue 6, pp 4701–4709 | Cite as

Degradation behaviors of PLA-matrix composite with 20 vol% magnesium alloy wires under static loading conditions

  • Chenglin ChuEmail author
  • Xuan LiEmail author
  • Weidong Yu
  • Linyuan Han
  • Jing Bai
  • Feng Xue


Influence of static compression loading on the degradation behaviors of polylactic acid-based composite reinforced with 20 vol% magnesium alloy wires (MAWs) is investigated. The external stress would enhance the degradation of the composite. As the applied stress is increased from 1 to 3 MPa, the overall degradation rate goes up. After immersion for 30 days, the degradation rate of PLA matrix in the composite at the stress level of 3 MPa is about 1.46 and 2.4 times those at 1 and 0 MPa (unloading condition) while the bending strength retention is 0.73 and 0.63 times those of the latter ones. The relationship between the degradation rate of PLA matrix in the composite and the external compression stress is further elucidated. The external stress deteriorates the strength retention of the composite but a high MAWs content could mitigate the deterioration.



This work was jointly supported by National Natural Science Foundation of China (Grant No. 31570961, 51771054), State Key Program of National Natural Science Foundation of China (Grant No. 51631003), National Key Research and Development Program of China (Grant No. 2016YFC1102402), Natural Science Foundation of Jiangsu Province (BK20181020) and the introduction of Talent Research Fund in Nanjing Institute of Technology (YKJ201705).

Compliance with ethical standards

Conflict of interest

The authors declare there is no conflict of interest regarding the publication of this paper.


  1. 1.
    Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Peter Augat (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355:S132–S147CrossRefGoogle Scholar
  2. 2.
    Südkamp N, Bayer J, Hepp P, Voigt C, Oestern H, Kääb M, Luo C, Plecko M, Wendt K, Köstler W (2009) Open reduction and internal fixation of proximal humeral fractures with use of the locking proximal humerus plate. J Bone Joint Surg Am 91:1320–1328CrossRefGoogle Scholar
  3. 3.
    Perren S (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res 138:175–196Google Scholar
  4. 4.
    Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R 77:1–34CrossRefGoogle Scholar
  5. 5.
    Törne K, Örnberg A, Weissenrieder J (2017) Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments. Acta Biomater 48:541–550CrossRefGoogle Scholar
  6. 6.
    Li X, Chu C, Chu PK (2016) Effects of external stress on biodegradable orthopedic materials: a review. Bioact Mater 1:77–84CrossRefGoogle Scholar
  7. 7.
    Li X, Chu CL, Liu L, Liu XK, Bai J, Guo C, Xue F, Lin PH, Chu PK (2015) Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires. Biomaterials 49:135–144CrossRefGoogle Scholar
  8. 8.
    Wu YH, Li N, Cheng Y, Zheng YF, Han Y (2013) In vitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA composite. J Mater Sci Technol 29:545–550CrossRefGoogle Scholar
  9. 9.
    Oosterbeek RN, Seal CK, Staiger MP, Hyland MM (2015) Topologically ordered magnesium-biopolymer hybrid composite structures. J Biomed Mater Res A 103:311–317CrossRefGoogle Scholar
  10. 10.
    Uppstu P, Paakki C, Rosling A (2015) In vitro hydrolysis and magnesium release of poly(d, l-lactide-co-glycolide)-based composites containing bioresorbable glasses and magnesium hydroxide. J Appl Polym Sci 132:42646. CrossRefGoogle Scholar
  11. 11.
    Liu H, Wang R, Chu HK, Sun D (2015) Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds. J Biomed Mater Res A 103:2966–2973CrossRefGoogle Scholar
  12. 12.
    Cifuentes SC, Gavilán R, Lieblich M, Benavente R, González-Carrasco JL (2016) In vitro degradation of biodegradable polylactic acid/magnesium composites: relevance of Mg particle shape. Acta Biomater 32:348–357CrossRefGoogle Scholar
  13. 13.
    Wen W, Zou Z, Luo B, Zhou C (2017) In vitro degradation and cytocompatibility of g-MgO whiskers/PLLA composites. J Mater Sci 52:2329–2344. CrossRefGoogle Scholar
  14. 14.
    Fan YB, Li P, Zeng L, Huang XJ (2008) Effects of mechanical load on the degradation of poly(d, l-lactic acid) foam. Polym Degrad Stab 93:677–683CrossRefGoogle Scholar
  15. 15.
    Guo M, Chu Z, Yao J, Feng W, Wang Y, Wang L, Fan Y (2016) The effects of tensile stress on degradation of biodegradable PLGA membranes: a quantitative study. Polym Degrad Stab 124:95–100CrossRefGoogle Scholar
  16. 16.
    Gutman EM (1998) Mechanochemistry of materials. Cambridge Int Science Publishing, CambridgeGoogle Scholar
  17. 17.
    Gutman EM (1994) Mechanochemistry of solid surfaces. World Scientific, SingaporeCrossRefGoogle Scholar
  18. 18.
    Baláž P (2003) Mechanical activation in hydrometallurgy. Int J Miner Pro 72:341–354CrossRefGoogle Scholar
  19. 19.
    Bonora PL, Andrei M, Eliezer A, Gutman EM (2002) Corrosion behaviour of stressed magnesium alloys. Corros Sci 44:729–749CrossRefGoogle Scholar
  20. 20.
    Chu CL, Han X, Bai J, Xue F, Chu PK (2012) Fabrication and degradation behavior of micro-arc oxidized biomedical magnesium alloy wires. Surf Coat Technol 213:307–312CrossRefGoogle Scholar
  21. 21.
    Kirkland NT, Birbilis N (2014) Magnesium biomaterials: design, testing, and best practice. Springer, ChamCrossRefGoogle Scholar
  22. 22.
    Schindler A, Harper D (1979) Polylactide. II. Viscosity–molecular weight relationships and unperturbed chain dimensions. J Polym Sci Pol Phys Ed 17:2593–2599CrossRefGoogle Scholar
  23. 23.
    Piemonte V, Gironi F (2013) Kinetics of hydrolytic degradation of PLA. J Polym Environ 21:313–318CrossRefGoogle Scholar
  24. 24.
    Codari F, Lazzari S, Soos M, Storti G, Morbidelli M, Moscatelli D (2012) Kinetics of the hydrolytic degradation of poly(lactic acid). Polym Degrad Stab 97:2460–2466CrossRefGoogle Scholar
  25. 25.
    Deng M, Zhou J, Chen G, Burkley D, Xu Y, Jamiolkowski D, Barbolt T (2005) Effect of load and temperature on in vitro degradation of poly(glycolide-co-l-lactide) multifilament braids. Biomaterials 26:4327–4336CrossRefGoogle Scholar
  26. 26.
    Kharazi AZ, Fathi MH, Bahmani F, Fanian H (2012) Nonmetallic textile composite bone plate with desired mechanical properties. J Compos Mater 46:2753–2761CrossRefGoogle Scholar
  27. 27.
    Fan Y, Li P, Yuan X (2010) Influence of mechanical loads on degradation of scaffolds. In: Lim CT, Goh JCH (eds). 6th world congress of biomechanics (WCB 2010) August 1–6, 2010 Springer, Berlin, pp 549–552Google Scholar
  28. 28.
    Rapoport NY, Gennadii EZ (1983) Kinetics and mechanism of the oxidation of polymers in a stressed state. Russ Chem Rev 52:897–916CrossRefGoogle Scholar
  29. 29.
    Ward IM, Sweeney J (2012) Mechanical properties of solid polymers. Wiley, New YorkCrossRefGoogle Scholar
  30. 30.
    Li X, Chu C, Zhou L, Bai J, Guo C, Xue F, Lin P, Chu Paul K (2017) Fully degradable PLA-based composite reinforced with 2D-braided Mg wires for orthopedic implants. Compos Sci Technol 142:180–188CrossRefGoogle Scholar
  31. 31.
    Li X, Chu C, Wei Y, Qi C, Bai J, Guo C, Lin P, Chu Paul K (2017) In vitro degradation kinetics of pure PLA and Mg/PLA composite: effects of immersion temperature and compression stress. Acta Biomater 48:468–478CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Zale S, Sawyer L, Bernstein H (1997) Effects of metal salts on poly(DL-lactide-co-glycolide) polymer hydrolysis. J Biomed Mater Res 34:531–538CrossRefGoogle Scholar
  33. 33.
    Mobedi H, Nekoomanesh M, Orafaei H, Mivehchi H (2006) Studying the degradation of poly(L-lactide) in presence of magnesium hydroxide. Iran Polym J 15:31–39Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.Jiangsu Key Laboratory for Advanced Metallic MaterialsSoutheast UniversityNanjingChina
  3. 3.School of Materials EngineeringNanjing Institute of TechnologyNanjingChina
  4. 4.Jiangsu Key Laboratory of Advanced Structural Materials and Application TechnologyNanjing Institute of TechnologyNanjingChina

Personalised recommendations