Journal of Materials Science

, Volume 54, Issue 6, pp 5074–5082 | Cite as

The effect of cooling rate on the microstructure and mechanical properties of NiCoFeCrGa high-entropy alloy

  • Dávid Molnár
  • Ádám Vida
  • Shuo Huang
  • Nguyen Q. ChinhEmail author


The effect of cooling rate on the microstructure and mechanical properties of equimolar NiCoFeCrGa high-entropy alloy (HEA) was studied by scanning electron microscopy, energy-dispersive X-ray spectroscopy and electron backscatter diffraction (EBSD), as well as by microhardness tests. Experimental results show that the cooling rate has a crucial impact on the developing microstructure which has a mixture of two—FCC and BCC—phases, leading to a self-similarity of the solidified structure formed in the sample. Furthermore, the cooling rate influences both the composition of the two phase-components and the ratio of their volume fractions, determining the mechanical properties of the sample. The present results confirm the grouping of Co, Fe and Cr in the FCC phase and that of Ni and Ga in BCC phase in the NiCoFeCrGa high-entropy alloy system. An empirical rule is suggested to predict how the phase-components can be expected in this complex high-entropy alloy.



Dalarna University, Regional Development Council of Dalarna, Regional Development Council of Gävleborg, County Administrative Board of Gävleborg, Swedish Steel Producers’ Association, Outokumpu Stainless and Sandviken City are thanked for financially supporting the research of DM. This research was partially supported by the Swedish Foundation for Strategic Research (SH), by the Hungarian–Russian Bilateral Research Program (TÉT) No. 2017-2.3.4-TÉT-RU-2017-00005, as well as by the Ministry of Human Capacities of Hungary within the Eötvös University Excellence Program (1783-3/2018/FEKUTSRAT).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303CrossRefGoogle Scholar
  2. 2.
    Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375:213–218CrossRefGoogle Scholar
  3. 3.
    Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511CrossRefGoogle Scholar
  4. 4.
    Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2016) High-entropy alloy: challenges and prospects. Mater Today 19(6):349–362CrossRefGoogle Scholar
  5. 5.
    Murty BS, Yeh JJW, Ranganathan S (2014) High-entropy alloys. Butterworth-Heinemann, OxfordGoogle Scholar
  6. 6.
    Deng Y, Tasan CC, Pradeep KG, Springer H, Kostka A, Raabe D (2015) Design of a twinning-induced plasticity high entropy alloy. Acta Mater 94:124–133CrossRefGoogle Scholar
  7. 7.
    Laplanche G, Kostka A, Horst OM, Eggeler G, George EP (2016) Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater 118:152–163CrossRefGoogle Scholar
  8. 8.
    Huang S, Vida Á, Molnár D, Kádas K, Varga LK, Holmström E, Vitos L (2015) Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy. Appl Phys Lett 107(25):251906CrossRefGoogle Scholar
  9. 9.
    Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J (2014) Discovery of a superconducting high-entropy alloy. Phys Rev Lett 113(10):107001CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Zuo T, Cheng Y, Liaw PK (2013) High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci Rep 3:1455CrossRefGoogle Scholar
  11. 11.
    Fazakas É, Wang JQ, Zadorozhnyy V, Louzguine-Luzgin DV, Varga LK (2014) Microstructural evolution and corrosion behavior of Al25Ti25Ga25Be25 equi-molar composition alloy. Mater Corros 65:691–695CrossRefGoogle Scholar
  12. 12.
    Zou Y, Ma H, Spolenak R (2015) Ultrastrong ductile and stable high-entropy alloys at small scales. Nat Commun 6:7748CrossRefGoogle Scholar
  13. 13.
    Tracy CL, Park S, Rittman DR, Zinkle SJ, Bei H, Lang M, Ewing RC, Mao WL (2017) High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat Commun 8:15634CrossRefGoogle Scholar
  14. 14.
    Wang WR, Wang WL, Wang SC, Tsai YC, Lai CH, Yeh JW (2012) Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26:44–51CrossRefGoogle Scholar
  15. 15.
    Guo S, Ng C, Lu J, Liu CT (2011) Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys 109(10):103505CrossRefGoogle Scholar
  16. 16.
    Tian F, Varga LK, Chen N, Shen J, Vitos L (2015) Empirical design of single phase high-entropy alloys with high hardness. Intermetallics 58:1–6CrossRefGoogle Scholar
  17. 17.
    Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z, Ruan H, Li T (2014) A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep 4:6200CrossRefGoogle Scholar
  18. 18.
    Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC (2016) Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534(7606):227CrossRefGoogle Scholar
  19. 19.
    Jablonski PD, Licavoli JJ, Gao MC, Hawk JA (2015) Manufacturing of high entropy alloys. JOM 67(10):2278–2287CrossRefGoogle Scholar
  20. 20.
    Guo S, Hu Q, Ng C, Liu CT (2013) More than entropy in high-entropy alloys: forming solid solutions or amorphous phase. Intermetallics 41:96–103CrossRefGoogle Scholar
  21. 21.
    Ma L, Li C, Jiang Y, Zhou J, Wang L, Wang F, Cao T, Xue Y (2017) Cooling rate-dependent microstructure and mechanical properties of AlxSi0.2CrFeCoNiCu1−x high entropy alloys. J Alloys Compd 694:61–67CrossRefGoogle Scholar
  22. 22.
    Lv Y, Hu R, Yao Z, Chen J, Xu D, Liu Y, Fan X (2017) Cooling rate effect on microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys. Mater Des 132:392–399CrossRefGoogle Scholar
  23. 23.
    King DJM, Middleburgh SC, McGregor AG, Cortie MB (2016) Predicting the formation and stability of single phase high-entropy alloys. Acta Mater 104:172–179CrossRefGoogle Scholar
  24. 24.
    Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2015) The generalized thermodynamic rule for phase selection in multicomponent alloys. Intermetallics 59:75–80CrossRefGoogle Scholar
  25. 25.
    Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 132:233–238CrossRefGoogle Scholar
  26. 26.
    Tian F, Varga LK, Chen N, Delczeg L, Vitos L (2013) Ab initio investigation of high-entropy alloys of 3d elements. Phys Rev B 87(7):075144CrossRefGoogle Scholar
  27. 27.
    Hsieh KC, Yu CF, Hsieh WT, Chiang WR, Ku JS, Lai JH, Tu CP, Yang CC (2009) The microstructure and phase equilibrium of new high performance high-entropy alloys. J Alloys Compd 483:209–212CrossRefGoogle Scholar
  28. 28.
    Vida Á, Varga LK, Chinh NQ, Molnar D, Huang S, Vitos L (2016) Effects of the sp element additions on the microstructure and mechanical properties of NiCoFeCr based high entropy alloys. Mater Sci Eng A 669:14–19CrossRefGoogle Scholar
  29. 29.
    Vida Á, Maksa Z, Molnár D, Huang S, Kovac J, Varga LK, Vitos L, Chinh NQ (2018) Evolution of the phase structure after different heat treatments in NiCoFeCrGa high entropy alloy. J Alloys Compd 743:234–239CrossRefGoogle Scholar
  30. 30.
    Vida Á, Chinh NQ, Lendvai J, Heczel A, Varga LK (2017) Microstructures and transition from brittle to ductile behavior of NiFeCrMoW high entropy alloys. Mater Lett 195:14–17CrossRefGoogle Scholar
  31. 31.
    Huang S, Vida Á, Li W, Molnár D, Kwon SK, Holmström E, Varga B, Varga LK, Vitos L (2017) Thermal expansion in FeCrCoNiGa high-entropy alloy from theory and experiment. Appl Phys Lett 110(24):241902CrossRefGoogle Scholar
  32. 32.
    Pryds NH, Huang X (2000) The effect of cooling rate on the microstructures formed during solidification of ferritic steel. Metall Mater Trans A 31:3155–3166CrossRefGoogle Scholar
  33. 33.
    Oliver W, Pharr G (1992) An improved technique for determining hardness and elastic modulus using load and displacement-sensing indentation systems. J Mater Res 7:1564–1583CrossRefGoogle Scholar
  34. 34.
    Jones NG, Christofidou KA, Stone HJ (2015) Rapid precipitation in an Al0.5CrFeCoNiCu high entropy alloy. Mater Sci Technol 31:1171–1177CrossRefGoogle Scholar
  35. 35.
    Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46:2817–2829CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied Materials Physics, Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden
  2. 2.Materials Science GroupDalarna UniversityFalunSweden
  3. 3.Institute for Solid State Physics and OpticsWigner Research Centre for PhysicsBudapestHungary
  4. 4.Department of Materials PhysicsEötvös University BudapestBudapestHungary

Personalised recommendations