Advertisement

Visualization of silica dispersion states in silicone rubber by fluorescent labeling

  • Kexu Chen
  • Ming Kang
  • Ai Lu
  • Lin Chen
  • Lixian Song
  • Rong Sun
Polymers
  • 8 Downloads

Abstract

The internal dispersion structure of silica fillers in polymer matrix is significant for design and fabricating high-performance polymer composite. In order to explore the relationship between fillers spatial dispersion states and mechanical properties, we use superficial fluorescent labeling to achieve fillers visualization in polymer matrix with laser scanning confocal microscopy. Through the effect of fluorescent silane coupling agent, the uniform red fluorescence characteristics were shown on the silica surface. The 2D-planar and 3D-spatial dispersion states of silica fillers in rubber matrix can be accurately observed with fluorescence imaging technology. The results by Avizo software statistics show that high-content silica fillers in composite tend to undergo dissociation of aggregates. These dissociated small volume aggregates which facilitate the interaction between particles and rubber matrix to dissipate mechanical energy effectively and rapidly improve rubber toughness. This successful visualization method opens a new avenue in spatial dispersion description of fillers aggregates in organic–inorganic composite.

Notes

Acknowledgements

This work was supported by the Sichuan Science and Technology Support Project in China (2017GZ0126).

Supplementary material

10853_2018_3191_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1917 kb)

References

  1. 1.
    Valentín JL, Morabarrantes I, Carreterogonzález J, Lópezmanchado MA, Sotta P, Long DR, Saalwächter K (2010) Novel experimental approach to evaluate filler-elastomer interactions. Macromolecules 43:334–346CrossRefGoogle Scholar
  2. 2.
    Bouty A, Petitjean L, Degrandcourt C, Gummel J, Kwaśniewski P, Meneau F, Boué F, Couty M, Jestin J (2014) Nanofiller structure and reinforcement in model silica/rubber composites: a quantitative correlation driven by interfacial agents. Macromolecules 47:5365–5378CrossRefGoogle Scholar
  3. 3.
    Davris T, Mermetguyennet MRB, Bonn D, Lyulin AV (2016) Filler size effects on reinforcement in elastomer-based nanocomposites: experimental and simulational insights into physical mechanisms. Macromolecules 49:7077–7087CrossRefGoogle Scholar
  4. 4.
    Klüppel M (2003) The role of disorder in filler reinforcement of elastomers on various length scales. Adv Polym Sci 164:1–86CrossRefGoogle Scholar
  5. 5.
    Landry CJ, Coltrain BK, Wesson JA, Zumbulyadis N, Lippert JL (1992) Polymerization of tetraethoxysilane in polymers: chemical nature of the interactions. Polymer 33:1496–1506CrossRefGoogle Scholar
  6. 6.
    Yang F, Ou Y, Yu Z (2015) Polyamide 6/silica nanocomposites prepared by in situ polymerization. J Appl Polym Sci 69:355–361CrossRefGoogle Scholar
  7. 7.
    Suzuki N, Zakaria MB, Chiang YD, Wu KCW, Yamauchi Y (2012) Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers. Phys Chem Chem Phys 14:7427–7432CrossRefGoogle Scholar
  8. 8.
    Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6:278–282CrossRefGoogle Scholar
  9. 9.
    Chandran S, Begam N, Padmanabhan V, Basu JK (2014) Confinement enhances dispersion in nanoparticle-polymer blend films. Nat Commun 5:3697CrossRefGoogle Scholar
  10. 10.
    Mangal R, Srivastava S, Archer LA (2015) Phase stability and dynamics of entangled polymer-nanoparticle composites. Nat Commun 6:7198CrossRefGoogle Scholar
  11. 11.
    Suter JL, Groen D, Coveney PV (2015) Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics. Tactoid Self-Assembl Emerg Mater Prop Adv Mater 27:966–984Google Scholar
  12. 12.
    Zhang C, Tang Z, Guo B, Zhang L (2018) Significantly improved rubber-silica interface via subtly controlling surface chemistry of silica. Compos Sci Technol 156:70–77CrossRefGoogle Scholar
  13. 13.
    Zhong B, Jia Z, Hu D, Luo Y, Jia D (2015) Reinforcement and reinforcing mechanism of styrene–butadiene rubber by antioxidant-modified silica. Compos Part A-Appl S 78:303–310CrossRefGoogle Scholar
  14. 14.
    Liu D, Song L, Song H, Chen J, Tian Q, Chen L, Sun G (2018) Correlation between mechanical properties and microscopic structures of an optimized silica fraction in silicone rubber. Compos Sci Technol 165:373–379CrossRefGoogle Scholar
  15. 15.
    Chen L, Song L, Li J, Chen P, Huang N, Li L (2016) From the volume - filling effect to the stress–bearing network: the reinforcement mechanisms of carbon black filler in natural rubber. Macromol Mater Eng 301:1390–1401CrossRefGoogle Scholar
  16. 16.
    Choi S (2010) Improvement of properties of silica-filled natural rubber compounds using polychloroprene. J Appl Polym Sci 83:2609–2616CrossRefGoogle Scholar
  17. 17.
    Baeza GP, Genix AC, Degrandcourt C, Gummel J, Mujtaba A, Saalwächter K, Oberdisse J (2014) Studying twin samples provides evidence for a unique structure-determining parameter in simplifed industrial nanocomposites. ACS Macro Lett 3:448–452CrossRefGoogle Scholar
  18. 18.
    Tohsan A, Kishi R, Ikeda Y (2015) A model filler network in nanocomposites prepared by in situ silica filling and peroxide cross-linking in natural rubber latex. Colloid Polym Sci 293:2083–2093CrossRefGoogle Scholar
  19. 19.
    Chen L, Zhou W, Lu J, Li J, Zhang W, Huang N, Li L (2015) Unveiling reinforcement and toughening mechanism of filler network in natural rubber with synchrotron radiation x-ray nano-computed tomography. Macromolecules 48:7923–7928CrossRefGoogle Scholar
  20. 20.
    Zhou W, Chen L, Lu J, Qi Z, Huang N, Li L, Huang W (2014) Imaging the strain induced carbon black filler network structure breakage with nano X-ray tomography. RSC Adv 4:54500–54505CrossRefGoogle Scholar
  21. 21.
    Song L, Wang Z, Tang X, Chen L, Chen P, Yuan Q, Li L (2017) Visualizing the toughening mechanism of nanofiller with 3D X-ray nano-ct: stress-induced phase separation of silica nanofiller and silicone polymer double networks. Macromolecules 50:7249–7257CrossRefGoogle Scholar
  22. 22.
    Brüning K, Schneider K, Roth SV, Heinrich G (2012) Kinetics of strain-induced crystallization in natural rubber studied by WAXD: dynamic and impact tensile experiments. Macromolecules 45:7914–7919CrossRefGoogle Scholar
  23. 23.
    Bindu P, Thomas S (2013) Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B 117:12632–12648CrossRefGoogle Scholar
  24. 24.
    Guan W, Wang S, Lu C, Tang BZ (2016) Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic–inorganic composites. Nat Commun 7:11811CrossRefGoogle Scholar
  25. 25.
    Feng Z, Zhong J, Guan W, Tian R, Lu C, Ding C (2018) Three-dimensional direct visualization of silica dispersion in polymer-based composites. Analyst 143:2090CrossRefGoogle Scholar
  26. 26.
    Yuan B, Song Y, Sheng Y, Zheng K, Huo Q, Xu X, Zou H (2014) Luminescence properties and energy transfer of Ca2Mg0.5AlSi1.5O7: Ce3+, Eu2+ phosphors for UV-excited white LEDs. Powder Technol 253:803–808CrossRefGoogle Scholar
  27. 27.
    Comby S, Surender EM, Kotova O, Truman LK, Molloy JK, Gunnlaugsson T (2014) Lanthanide-functionalized nanoparticles as MRI and luminescent probes for sensing and/or imaging applications. Inorg Chem 53:1867–1879CrossRefGoogle Scholar
  28. 28.
    Li Q, Lin J, Wu J, Lan Z, Wang Y, Peng F, Huang M (2013) Improving photovoltaic performance of dye-sensitized solar cell by downshift luminescence and p-doping effect of Gd2O3: Sm3+. J Lumin 134:59–62CrossRefGoogle Scholar
  29. 29.
    Qiao Y, Chen H, Lin Y, Yang Z, Cheng X, Huang J (2011) Photoluminescent lanthanide-doped silica nanotubes: sol−gel transcription from functional template. J Phys Chem C 115:7323–7330CrossRefGoogle Scholar
  30. 30.
    Chen K, Kang M, Liu M, Shen S, Sun R (2018) Synthesis of di-functional ligand and fluorescently labeling SiO2 microspheres. Opt Mater 79:464–469CrossRefGoogle Scholar
  31. 31.
    Li WX, Zheng YS, Cao XF, Bai J, Fu ZF, Bao JR, Li YL (2016) Preparation, characterization, and luminescence properties of dysprosium perchlorate with MABA-Si and phen or dipy complexes as well as SiO2@Dy (MABA-Si)L core-shell structure nanometermeter luminescent composites. J Lumin 178:470–478CrossRefGoogle Scholar
  32. 32.
    Mou Y, Kang M, Wang F, Liu M, Chen K, Sun R (2017) Synthesis and luminescent properties of monodisperse SiO2@SiO2:Eu(DBM)3phen microspheres with core-shell structure by sol–gel method. J Sol–Gel Sci Technol 83:447–456CrossRefGoogle Scholar
  33. 33.
    Stöber W (1968) A. Fink and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  34. 34.
    Wang J, Jia H, Ding L, Xiong X (2015) Impacts of filler covalent and non-covalent modification on the network structure and mechanical properties of carbon-silica dual phase filler/natural rubber. Polym Adv Technol 26:1168–1175CrossRefGoogle Scholar
  35. 35.
    Moretti E, Bellotto L, Basile M, Malba C, Enrichi F, Benedetti A, Polizzi S (2013) Investigation on the effect of Tb (dbm)3phen on the luminescent properties of Eu (dbm)3phen-containing mesoporous silica nanoparticles. Mater Chem Phys 142:445–452CrossRefGoogle Scholar
  36. 36.
    Sun JY, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Highly stretchable and tough hydrogels. Nat 489:133–136CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Environment-Friendly Energy MaterialsSouthwest University of Science and TechnologyMianyangChina
  2. 2.Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations