Journal of Materials Science

, Volume 53, Issue 7, pp 4927–4938 | Cite as

Visible light photocatalytic oxidative desulfurization using Ti-MCM-41-loaded iron phthalocyanine combined with ionic liquid extraction

  • Ran Liu
  • Juan Zhang
  • Zhice Xu
  • Dishun Zhao
  • Shuang Sun
Chemical routes to materials


Iron phthalocyanine (PcFe) was loaded on Ti-MCM-41 as visible light photocatalyst (R-PcFe/Ti-MCM-41). Dibenzothiophene (DBT) was photooxidized using R-PcFe/Ti-MCM-41 as a photocatalyst, air as an oxidant, and ionic liquid as the extraction agent during visible light irradiation at room temperature and ambient conditions. The results indicated that photocatalytic efficiency of the amino iron phthalocyanine (NH2-PcFe)/Ti-MCM-41 was superior to the other substituent groups. The DBT content in the model oil decreased from 1000 to 44 μg/mL with 95.6% removal rate under the optimal reaction conditions (model oil 10 mL, photocatalyst NH2-PcFe/Ti-MCM-41 0.02 g, loading amount of NH2-PcFe 0.3 g/g, air flow rate 100 mL/min, reaction time 2 h, room temperature). The kinetics of photocatalytic oxidation of DBT follows first-order kinetics with a rate constant of 1.319 h−1 and halftime of 0.525 h. The photocatalyst NH2-PcFe/Ti-MCM-41 was reused for five times, and the catalytic activity decreased slightly. The photocatalytic oxidation system demonstrated significant desulfurization effects on different sulfur compounds and real gasoline, and the sulfur content of the actual gasoline could be reduced from 1000 to 78 ppm.



This work was supported by the national natural science foundation of China (No. 21106032) and Science and Technology Research Projects of Hebei Education Department (Nos. QN2017067; ZD2016064).

Supplementary material

10853_2017_1954_MOESM1_ESM.docx (240 kb)
Supplementary material 1 (DOCX 240 kb)


  1. 1.
    Castillo K, Parsons JG, Chavez D, Chianelli RR (2009) Oxidation of dibenzothiophene to dibenzothiophene-sulfone using silica gel. J Catal 268:329–334CrossRefGoogle Scholar
  2. 2.
    Fu HB, Chen JM (2017) Formation, features and controlling strategies of severe haze-fog pollutions in China. Sci Total Environ 578:121–138CrossRefGoogle Scholar
  3. 3.
    Song C (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 86:211–214CrossRefGoogle Scholar
  4. 4.
    Zhang M, Zhu WS, Xun SH, Li HM, Gu QQ, Zhao Z, Wang Q (2013) Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chem Eng J 220:328–336CrossRefGoogle Scholar
  5. 5.
    Liu HY, Bao SX, Cai ZT, Xu TF, Li N, Wang LL, Chen HX, Lu WY, Chen WX (2017) A novel method for ultra-deep desulfurization of liquid fuels at room temperature. Chem Eng J 317:1092–1098CrossRefGoogle Scholar
  6. 6.
    Matsuzaw S, Tanaka J, Sato S, Ibusuki T (2002) Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2: effect of hydrogen peroxide and ultrasound irradiation. J Photochem Photobiol A Chem 149:183–189CrossRefGoogle Scholar
  7. 7.
    Robertson J, Bandosz TJ (2006) Photooxidation of dibenzothiophene on TiO2/hectorite thin films layered catalyst. J Colloid Interface Sci 299:125–135CrossRefGoogle Scholar
  8. 8.
    Wang XJ, Li FT, Liu JX, Kou CG, Zhao Y, Hao YJ, Zhao DS (2012) Preparation of TiO2 in ionic liquid via microwave radiation and in situ photocatalytic oxidative desulfurization of diesel oil. Energy Fuels 26:6777–6782CrossRefGoogle Scholar
  9. 9.
    Li FT, Liu Y, Sun ZM, Zhao Y, Liu RH, Chen LJ, Zhao DS (2012) Photocatalytic oxidative desulfurization of dibenzothiophene under simulated sunlight irradiation with mixed-phase Fe2O3 prepared by solution combustion. Catal Sci Technol 2:1455–1462CrossRefGoogle Scholar
  10. 10.
    Zhang J, Zhao DS, Wang JL, Yang LY (2009) Photocatalytic oxidation of dibenzothiophene using TiO2/bamboo charcoal. J Mater Sci 44:3112–3117. Scholar
  11. 11.
    Zhang J, Zhao DS, Yang LY, Li YB (2010) Photocatalytic oxidation dibenzothiophene using TS-1. Chem Eng J 156:528–531CrossRefGoogle Scholar
  12. 12.
    Priyanka KP, Sankararaman S, Balakrishna KM, Varghese T (2017) Enhanced visible light photocatalysis using TiO2/phthalocyanine nanocomposites for the degradation of selected industrial dyes. J Alloys Compd 720:541–549CrossRefGoogle Scholar
  13. 13.
    Iliev V, Alexiev V, Bilyarska L (1999) Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds. J Mol Catal A: Chem 137:15–22CrossRefGoogle Scholar
  14. 14.
    Iliev V, Prahov L, Bilyarska L, Fischer H, Schulz-Ekloff G, Wohrle D, Petrov L (2000) Oxidation and photooxidation of sulfide and thiosulfate ions catalyzed by transit ion metal chalcogenides and phthalocyanine complexes. J Mol Catal A: Chem 151:161–169CrossRefGoogle Scholar
  15. 15.
    Gorduk S, Avciata O, Avciata U (2018) Photocatalytic degradation of methylene blue under visible light irradiation by non-peripherally tetra substituted phthalocyanine-TiO2 nanocomposites. Inorg Chim Acta 471:137–147CrossRefGoogle Scholar
  16. 16.
    Li SW, Li YY, Yang F, Liu Z, Gao RM, Zhao JS (2015) Photocatalytic oxidation desulfurization of model diesel over phthalocyanine/La0.8Ce0.2NiO3. J Colloid Interface Sci 460:8–17CrossRefGoogle Scholar
  17. 17.
    Kadgaonkar MD, Laha SC, Pandey RK, Kumar P, Kumar R (2004) Cerium-containing MCM-41 materials as selective acylation and acylation catalysts. Catal Today 97:225–231CrossRefGoogle Scholar
  18. 18.
    Chen Y, Gu Y, Li N, Lu WY, Chen WX (2016) Efficient oxidative removal of organic pollutants by ordered mesoporous carbon-supported cobalt phthalocyanine. J Nanomater. Article ID 6953587Google Scholar
  19. 19.
    Huang C, Liu R, Yang WY, Zhang CT, Zhu HJ (2017) Iron(II) phthalocyanine immobilized SBA-15 catalysts: preparation, characterization and application for toluene selective aerobic oxidation. Inorg Chim Acta 467:307–315CrossRefGoogle Scholar
  20. 20.
    Ramacharyulu PVRK, Muhammad R, Praveen Kumar J, Prasad GK, Mohantya P (2015) Iron phthalocyanine modified mesoporous titania nanoparticles for photocatalytic activity and CO2 capture applications. Phys Chem Chem Phys 17(39):26456–26462CrossRefGoogle Scholar
  21. 21.
    Wang F, Wang GJ, Sun WT, Wang TB, Chen XT (2015) Metallophthalocyanine functionalized magnetic mesoporous silica nanoparticles and its application in ultrasound-assisted oxidation of benzothiophene. Microporous Mesoporous Mater 217:203–209CrossRefGoogle Scholar
  22. 22.
    Zhang J, Zhao DS, Ma Z, Wang YN (2010) Phase-boundary photocatalytic oxidation of dibenzothiophene over amphiphilic Ti-MCM-41 molecular sieve. Catal Lett 138:111–115CrossRefGoogle Scholar
  23. 23.
    Chen WX, Chen SL, Lü SS, Yao YY, Xu MH (2007) Photocatalytic oxidation of phenol in aqueous solutions with oxygen catalyzed by supported metallophthalocyanine catalyst. Sci China, Ser B: Chem 50(3):379–384CrossRefGoogle Scholar
  24. 24.
    Matteo G, Nicoletta R, Rinaldo P, Giovanni F, Giuliano M (2003) Epoxidation on titanium-containing silicates: do structural features really affect the catalytic performance. J Catal 214:242–250CrossRefGoogle Scholar
  25. 25.
    Koyano KA, Tatsumi T (1997) Synthesis of titanium-containing MCM-41. Microporous Mater 10:259–271CrossRefGoogle Scholar
  26. 26.
    Kropf H, Hoffmann HD (1967) Autoxidation von cumol in gegenwart von substituierten kupfer-phthalocyaninen und verwandten kupferkomplexen. Tetrahedron Lett 8:659–663CrossRefGoogle Scholar
  27. 27.
    Buck T, Bohlen H, Wöhrle D, Schulz-Ekloff G, Andereev A (1993) Influence of substituents and ligands of various cobalt(II) porphyrin derivatives coordinately bonded to silica on the oxidation of mercaptan. J Mol Catal 80:253–267CrossRefGoogle Scholar
  28. 28.
    Guo W, Wang CY, Lin P, Lu XP (2011) Oxidative desulfurization of diesel with TBHP/isobutyl aldehyde/air oxidation system. Appl Energy 88:175–179CrossRefGoogle Scholar
  29. 29.
    Zhang J, Li JP, Ren TJ, Hu YH, Ge JJ, Zhao DS (2014) Oxidative desulfurization of dibenzothiophene based on air and cobalt phthalocyanine in an ionic liquid. RSC Adv 4:3206–3210CrossRefGoogle Scholar
  30. 30.
    Shiraishi Y, Tachibana K, Hirai T, Komasawa I (2002) Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid − liquid extraction. Ind Eng Chem Res 41:4362–4375CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuangChina

Personalised recommendations