Journal of Materials Science

, Volume 53, Issue 7, pp 5125–5139 | Cite as

Ab initio design of drug carriers for zoledronate guest molecule using phosphonated and sulfonated calix[4]arene and calix[4]resorcinarene host molecules

  • Yong-Man Jang
  • Chol-Jun Yu
  • Jin-Song Kim
  • Song-Un Kim
Computation
  • 46 Downloads

Abstract

Monomolecular drug carriers based on calix[n]arenes and calix[n]resorcinarenes containing the interior cavity can enhance the affinity and specificity of the osteoporosis inhibitor drug zoledronate (ZOD). In this work, we investigated the suitability of nine different calix[4]arenes- and calix[4]resorcinarenes-based macrocycles as hosts for the ZOD guest molecule by conducting ab initio density functional theory calculations for structures and energetics of eighteen different host-guest complexes. For the optimized molecular structures of the free, phosphonated, sulfonated calix[4]arenes and calix[4]resorcinarenes, the geometric sizes of their interior cavities were measured and compared with those of the host-guest complexes in order to check the appropriateness for host-guest complex formation. Our calculations of binding energies indicated that in gaseous states some of the complexes might be unstable but in aqueous states almost all of the complexes can be formed spontaneously. Of the two different docking ways, the insertion of ZOD with the P–O–P branch into the cavity of host was easier than that with the nitrogen-containing heterocycle of ZOD. The work will open a way for developing effective drug delivering systems for the ZOD drug and promote experimentalists to synthesize them.

Notes

Acknowledgements

This work is supported by the State Committee of Science and Technology, Democratic People’s Republic of Korea. Computation was done on the HP Blade System C7000 (HP BL460c) that is owned by Faculty of Materials Science, Kim Il Sung University.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no competing interest

References

  1. 1.
    Russell RGG (2011) Bisphosphonates: the first 40 years. Bone 49:2–19CrossRefGoogle Scholar
  2. 2.
    Bartl R, Frisch B, von Tresckow E, Bartl C (2007) Bisphosphonates in medical practice. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Green JR, Muller K, Jaeggi KA (1994) Preclinical pharmacology of CGP 42 446, a new, potent, heterocyclic bisphosphonate compound. J Bone Miner Res 9:745–751CrossRefGoogle Scholar
  4. 4.
    Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RGG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617CrossRefGoogle Scholar
  5. 5.
    Ebetino FH, Hogan AML, Sun S, Tsoumpra MK, Duan X, Triftt JT, Kwaasi AA, Dunford JE, Barnett BL, Oppermann U, Lundy MW, Boyde A, Kashemirov BA, McKenna CE, Russell RGG (2011) The relationship between the chemistry and biological activity of the bisphosphonates. Bone 49:20–33CrossRefGoogle Scholar
  6. 6.
    Ri MH, Yu CJ, Jang YM, Kim SU (2016) Ab initio investigation of the adsorption of zoledronic acid molecule on hydroxyapatite (001) surface: an atomistic insight of bone protection. J Mater Sci 51:3125–3135.  https://doi.org/10.1007/s10853-015-9622-8 CrossRefGoogle Scholar
  7. 7.
    Merino P, Maiuolo L, Delso I, Algieri V, Nino AD, Tejero T (2017) Chemical approaches to inhibitors of isoprenoid biosynthesis: targeting farnesyl and geranylgeranyl pyrophosphate synthases. RSC Adv 7:10947CrossRefGoogle Scholar
  8. 8.
    Pascaud P, Errassifi F, Brouillet F, Sarda S, Barroug A, Legrouri A, Rey C (2014) Adsorption on apatitic calcium phosphates for drug delivery: interaction with bisphosphonate molecules. J Mater Sci Mater Med 25:2373–2381CrossRefGoogle Scholar
  9. 9.
    Bae Y, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205CrossRefGoogle Scholar
  10. 10.
    Dreher M, Liu W, Michelich C (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344CrossRefGoogle Scholar
  11. 11.
    Tu C, Zhu L, Li P, Chen Y, Su Y, Yan D, Zhu X, Zhou G (2011) Supramolecular polymeric micelles by the host–guest interaction of star-like calix[4]arene and chlorin e6 for photodynamic therapy. Chem Commun 47:6063–6065CrossRefGoogle Scholar
  12. 12.
    Laza-Knoerr AL, Gref R, Couvreur P (2010) Cyclodextrins for drug delivery. J Drug Target 18:645–656CrossRefGoogle Scholar
  13. 13.
    Yin H, Wang R (2017) Applications of cucurbit[n]urils (n = 7 or 8) in pharmaceutical science and complexation of biomolecules. Isr J Chem.  https://doi.org/10.1002/ijch.201700092 Google Scholar
  14. 14.
    Kuok K, Li S, Wyman W, Wang R (2017) Cucurbit[7]uril: an emerging candidate for pharmaceutical excipients. Ann NY Acad Sci 1398:108–119CrossRefGoogle Scholar
  15. 15.
    Gutsche CD (2008) Calixarenes: an introduction. The Royal Society of Chemistry, CambridgeGoogle Scholar
  16. 16.
    Sliwa W, Kozlowski C (2009) Calixarenes and resorcinarenes: synthesis, properties and applications, vol 1. Wiley-VCH, WeinheimGoogle Scholar
  17. 17.
    Redshaw C (2003) Coordination chemistry of the larger calixarenes. Coord Chem Rev 244:45–70CrossRefGoogle Scholar
  18. 18.
    Hong J, Ham S (2008) Comparative study of calix[4]arene derivatives: implications for ligand design. Tetrahedron Lett 49:2393–2386CrossRefGoogle Scholar
  19. 19.
    Mutihac L, Lee JH, Kim JS, Vicens J (2011) Recognition of amino acids by functionalized calixarenes. Chem Soc Rev 40:2777–2796CrossRefGoogle Scholar
  20. 20.
    Joseph R, Chinta JP, Rao CP (2010) Benzothiazole appended lower rim 1,3-diamido-derivative of calix[4]arene: synthesis, structure, receptor properties towards Cu2+, iodide recognition and computational modeling. Inorg Chim Acta 363:2833–2839CrossRefGoogle Scholar
  21. 21.
    Ikeda A, Shinkai S (1997) Novel cavity design using calix[n]arene skeletons: towards molecular recognition and metal binding. Chem Rev 97:1713–1734CrossRefGoogle Scholar
  22. 22.
    Rodik RV, Boyko VI, Kalchenko VI (2009) Calixarenes in bio-medical research. Curr Med Chem 16:1630–1655CrossRefGoogle Scholar
  23. 23.
    Varejao EVV, de Fátima A, Fernadez SA (2013) Calix[n]arenes as goldmines for the development of chemical entities of pharmaceutical interest. Curr Pharm Des 19:6507–6521CrossRefGoogle Scholar
  24. 24.
    Hoskins C, Curtis ADM (2015) Simple calix[n]arenes and calix[4]resorcinarenes as drug solubilizing agents. J Nanomed Res 2:28Google Scholar
  25. 25.
    Morozova JE, Syakaev VV, Kazakova EK, Shalaeva YV, Nizameev IR, Kadirov MK, Voloshina AD, Zobov VV, Konovalov AI (2016) Amphiphilic calixresorcinarene associates as effective solubilizing agents for hydrophobic organic acids: construction of nano-aggregates. Soft Matter 12:5990CrossRefGoogle Scholar
  26. 26.
    Perret F, Coleman AW (2011) Biochemistry of anionic calix[n]arenes. Chem Commun 47:7303–7319CrossRefGoogle Scholar
  27. 27.
    Martin AD, Houlihan E, Morellini N, Eggers PK, James E, Stubbs KA, Harvey AR, Fitzgerald M, Raston CL, Dunlop SA (2012) Synthesis and toxicology of p-phosphonic acid calixarenes and O-alkylated analogues as potential calixarene-based phospholipids. ChemPlusChem 77:308–313CrossRefGoogle Scholar
  28. 28.
    Shahgaldian P, Silva ED, Coleman AW (2003) A first approach to the study of calixarene solid lipid nanoparticle (SLN) toxicity. J Inclusion Phenom 46:175–177CrossRefGoogle Scholar
  29. 29.
    Horvat G, Frkanec L, Cindro N, Tomišić V (2017) A comprehensive study of the complexation of alkali metal cations by lower rim calix[4]arene amide derivatives. Phys Chem Chem Phys 19:24316–24329CrossRefGoogle Scholar
  30. 30.
    de Lara LS, Wrobel EC, Lazzarotto M, de Lázaro SR, Camilo A, Wohnrath K (2016) An experimental and theoretical study of the aggregate structure of calix[6]arenes in Langmuir films at the water/air interface. Phys Chem Chem Phys 18:22906–22913CrossRefGoogle Scholar
  31. 31.
    Wheate NJ, Abbott GM, Tate RJ, Clements CJ, Edrada-Ebel R, Johnston BF (2009) Side-on binding of p-sulphonatocalix[4]arene to the dinuclear platinum complex trans-\([{\text{P}}_{\text{t}}{\text{Cl}}({\text{NH}}_{3})_{22} \mu {\text{-dpzm}}]^{2+}\) and its implications for anticancer drug delivery. J Inorg Biochem 103:448–454CrossRefGoogle Scholar
  32. 32.
    Mendez-Arroyo J, Barroso-Flores J, Lifschitz AM, Sarjeant AA, Stern CL, Mirkin CA (2014) A multi-state, allosterically-regulated molecular receptor with switchable selectivity. J Am Chem Soc 136:10340–10348CrossRefGoogle Scholar
  33. 33.
    Adhikari BB, Roshandel S, Fujii A, Schramm MP (2015) Calixarene-mediated liquid membrane transport of choline conjugates 2: transport of drug-choline conjugates and neurotransmitters. Eur J Org Chem 12:2683–2690CrossRefGoogle Scholar
  34. 34.
    Adhikari BB, Fujii A, Schramm MP (2014) Calixarene‐mediated liquid‐membrane transport of choline conjugates. Eur J Org Chem 14:2972–2979CrossRefGoogle Scholar
  35. 35.
    Bayrakci M, Ertul S, Yilmaz M (2011) Transportation of poorly soluble drug molecules from the organic phase to the aqueous phase by using phosphorylated calixarenes. J Chem Eng Data 56:4473–4479CrossRefGoogle Scholar
  36. 36.
    Bayrakci M, Ertul S, Yilmaz M (2012) Phase solubility studies of poorly soluble drug molecules by using O-phosphorylated calixarenes as drug-solubilizing agents. J Chem Eng Data 57:233–239CrossRefGoogle Scholar
  37. 37.
    Yang W, de Villiers MM (2004) The solubilization of the poorly water soluble drug nifedipine by water soluble 4-sulphonic calix-[n]arenes. Eur J Pharm Biopharm 58:629–636CrossRefGoogle Scholar
  38. 38.
    Sautrey G, Clarot I, Rogalska E, de Vains JBR (2012) New potential prodrugs of aciclovir using calix[4]arene as a lipophilic carrier: synthesis and drug-release studies at the air-water interface. New J Chem 36:2060–2069CrossRefGoogle Scholar
  39. 39.
    Huggins DJ, Sherman W, Tidor B (2012) Rational approaches to improving selectivity in drug design. J Med Chem 55:1424–1444CrossRefGoogle Scholar
  40. 40.
    Muro S (2012) Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release 164:125–137CrossRefGoogle Scholar
  41. 41.
    Wang K, Guo DS, Wang X, Liu Y (2011) Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano 5:2880–2894CrossRefGoogle Scholar
  42. 42.
    Guo DS, Wang K, Wang YX, Liu Y (2012) Cholinesterase-responsive supramolecular vesicle. J Am Chem Soc 134:10244–10250CrossRefGoogle Scholar
  43. 43.
    Guo DS, Liu Y (2014) Supramolecular chemistry of p-sulfonatoclix[n]arenes and its biological applications. Acc Chem Res 47:1925–1934CrossRefGoogle Scholar
  44. 44.
    Galindo-Murillo R, Olmedo-Romero A, Cruz-Flores E, Petrar PM, Kunsagi-Mate S, Barroso-Flores J (2014) Calix[n]arene-based drug carriers: a DFT study of their electronic interactions with a chemotherapeutic agent used against leukemia. Comput Theor Chem 1035:84–91CrossRefGoogle Scholar
  45. 45.
    Galindo-Murillo R, Sandoval-Salinas ME, Barroso-Flores J (2014) In silico design of monomolecular drug carriers for the tyrosine kinase inhibitor drug imatinib based on calix- and thiacalix[n]arene host molecules: a DFT and molecular dynamics study. J Chem Theory Comput 10:825–834CrossRefGoogle Scholar
  46. 46.
    Makrlík E, Toman P, Vaňura P (2012) Complexation of the lithium cation with beauvericin: experimental and DFT study. J Mol Struct 1024:142–145CrossRefGoogle Scholar
  47. 47.
    Makrlík E, Toman P, Vaňura P, Moyer BA (2012) Interaction of the cesium cation with calix[4]arene-bis(t-octylbenzo-18-crown-6): extraction and DFT study. J Mol Struct 1024:14–18CrossRefGoogle Scholar
  48. 48.
    Makrlík E, Dybal J, Vaňura P (2013) Interaction of the thallium cation with 1,3-alternate-25,27-bis(1-octyloxy)calix[4]arene-crown-6: experimental and theoretical study. J Mol Struct 1042:74–77CrossRefGoogle Scholar
  49. 49.
    Bayrakdar A, Kart HH, Elcin S, Deligoz H, Karabacak M (2015) Synthesis and DFT calculation of a novel 5,17-di(2-antracenylazo)-25,27-di(ethoxycarbonylmethoxy)-26,28-dihydroxycali. Spectrochim Acta A 136:607–617CrossRefGoogle Scholar
  50. 50.
    Venkataramanan NS, Sahara R, Mizuseki H, Kawazoe Y (2010) Quantum chemical study on the alkali atom doped calix[4]arene as hydrogen storage material. Comput Mater Sci 49:S263–S267CrossRefGoogle Scholar
  51. 51.
    Suwattanamala A, Magalhaes ALM, Gomes JANF (2005) Computational study of calix[4]arene derivatives and complexation with Zn2+. Chem Phys 310:109–122CrossRefGoogle Scholar
  52. 52.
    Hermann J, Alfè D, Tkatchenko A (2017) Nanoscale \(\pi {-}\pi \) stacked molecules are bound by collective charge fluctuations. Nat Commun 8:14052CrossRefGoogle Scholar
  53. 53.
    Schubert F, Rossi M, Baldauf C, Pagel K, Warnke S, von Helden G, Filsinger F, Kupser P, Meijer G, Salwiczek M, Koksch B, Scheffler M, Blum V (2015) Exploring the conformational preferences of 20-residue peptides in isolation: Ac-Ala19-Lys + H+ vs.. Ac-Lys-Ala19 + H+ and the current reach of DFT. Phys Chem Chem Phys 17:7373CrossRefGoogle Scholar
  54. 54.
    Carter DJ, Rohl AL (2012) Noncovalent interactions in SIESTA using the vdW-DF functional: S22 benchmark and macrocyclic structures. J Chem Theory Comput 8:281–289CrossRefGoogle Scholar
  55. 55.
    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The Siesta method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745CrossRefGoogle Scholar
  56. 56.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  57. 57.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  58. 58.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:786Google Scholar
  59. 59.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  60. 60.
    Klamt A, Schürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Faculty of ChemistryKim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea
  2. 2.Natural Science CentreKim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea
  3. 3.Department of Computational Materials Design (CMD), Faculty of Materials ScienceKim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea

Personalised recommendations